zoukankan      html  css  js  c++  java
  • pytorch 修改预训练model

        class Net(nn.Module):
            def __init__(self , model):
                super(Net, self).__init__()
                #取掉model的后两层
                self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
                self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
                self.pool_layer = nn.MaxPool2d(32)  
                self.Linear_layer = nn.Linear(2048, 8)
                
            def forward(self, x):
                x = self.resnet_layer(x)
                x = self.transion_layer(x)
                x = self.pool_layer(x)
                x = x.view(x.size(0), -1) 
                x = self.Linear_layer(x) 
                return x
    
    
        resnet = models.resnet50(pretrained=True)
    
        model = Net(resnet)
    

    训练特定层,冻结其它层 

    The basic idea is that all models have a function model.children() which returns it’s layers. Within each layer, there are parameters (or weights), which can be obtained using .param() on any children (i.e. layer). Now, every parameter has an attribute called requires_grad which is by default True. True means it will be backpropagrated and hence to freeze a layer you need to set requires_grad to False for all parameters of a layer.

    import torchvision.models as models
    resnet = models.resnet18(pretrained=True)
    ct = 0
    #This freezes layers 1-6 in the total 10 layers of Resnet18. for child in resnet.children(): ct += 1 if ct< 7: for param in child.parameters(): param.requires_grad = False

      

  • 相关阅读:
    drf3
    字典的操作方法
    列表的操作方法
    字符串的操作方法
    while循环和基本运算符
    初识数据类型
    USDT相关
    带团队
    CentOS7更改时区及同步网络时间
    mac胡刷新dns
  • 原文地址:https://www.cnblogs.com/ylHe/p/12916055.html
Copyright © 2011-2022 走看看