zoukankan      html  css  js  c++  java
  • 深入理解TCP协议及其源代码

    一、三次握手过程

      在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。如下图所示:

      首先,客户端开始的时候,首先创建sock文件描述符,接着就进行connect发起连接服务器请求,阻塞等待服务器应答。

      接着,服务器开始的时候,分配一个listen_sock文件描述符,接着进行bind绑定,绑定完毕之后进行listen监听,最后进行accept,此时阻塞等待客户端的连接。连接建立accept返回之后,分配一个新的文件描述符与客户端通信。

      第一次握手:Client先产生一个初始序列号seq:8000,SYN标志位置1,将该数据包发送给Server端,之后Client端进入SYN_SENT状态,等待Client确认。

      第二次握手:Server收到数据包后也发送自己的SYN报文作为响应,并初始化序列号seq=15000,为了确认Client的seq,Server将Client发送的seq加1作为ACK发送给Client,Server进入SYN_RCVD状态。

      第三次握手:为了确认Server的SYN,Client将Server发送的seq加1作为ACK发送给Server。Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

      通过这样的三次握手,客户端和服务端建立起可靠的全双工的连接,开始传送数据。三次握手的最主要目的是保证连接是全双工的,可靠更多的是通过重传机制来保证的。

    TCP状态转换图:

      结合状态转换图来看三次握手:

      CLOSED:起始点,在超时或者连接关闭时候进入此状态,这并不是一个真正的状态,而是这个状态图的假想起点和终点。

      LISTEN:服务器端等待连接的状态。服务器经过socket,bind,listen函数之后进入此状态,开始监听客户端发过来的连接请求。此称为应用程序被动打开(等到客户端连接请求)。

      SYN_SENT:第一次握手发生阶段,客户端发起连接。客户端调用connect,发送SYN给服务器端,然后进入SYN_SENT状态,等待服务器端确认(三次握手中的第二个报文)。如果服务器端不能连接,则直接进入CLOSED状态。

      SYN_RCVD:第二次握手发生阶段,跟3对应,这里是服务器端接收到了客户端的SYN,此时服务器由LISTEN进入SYN_RCVD状态,同时服务器端回应一个ACK,然后再发送一个SYN即SYN+ACK给客户端。状态图中还描绘了这样一种情况,当客户端在发送SYN的同时也收到服务器端的SYN请求,即两个同时发起连接请求,那么客户端就会从SYN_SENT转换到SYN_REVD状态。

      ESTABLISHED:第三次握手发生阶段,客户端接收到服务器端的ACK包(ACK,SYN)之后,也会发送一个ACK确认包,客户端进入ESTABLISHED状态,表明客户端这边已经准备好,但TCP需要两端都准备好才可以进行数据传输。服务器端收到客户端的ACK之后会从SYN_RCVD状态转移到ESTABLISHED状态,表明服务器端也准备好进行数据传输了。这样客户端和服务器端都是ESTABLISHED状态,就可以进行后面的数据传输了。所以ESTABLISHED也可以说是一个数据传送状态。

      上面就是TCP三次握手过程的状态变迁。结合第一张三次握手过程图,从报文的角度看状态变迁:SYN_SENT状态表示已经客户端已经发送了SYN报文,SYN_RCVD状态表示服务器端已经接收到了SYN报文。

    二、TCP协议源代码跟踪分析

      1.TCP的三次握手从用户程序的角度看就是客户端connect和服务端accept建立起连接时背后的完成的工作。由上次的实验我们可以知道,在socket接口层这两个socket API函数分别对应着sys_connect和sys_accept4函数,课上老师说明, sys_connect和sys_accecpt是通过函数指针sock->opt->connect和sock->opt->accept调用了具体的函数来实现的,在即调用了tcp_v4_connect函数和inet_csk_accept函数,这两个函数进一步触及TCP数据收发过程tcp_transmit_skb和tcp_v4_rcv函数。

      在net/ipv4/tcp-ipv4.c文件下的结构体变量struct proto tcp_prot指定了TCP协议栈的访问接口函数:

    struct proto tcp_prot = {
            .name            = "TCP",
            .owner            = THIS_MODULE,
            .close            = tcp_close,
            .pre_connect        = tcp_v4_pre_connect,
            .connect        = tcp_v4_connect,
            .disconnect        = tcp_disconnect,
            .accept            = inet_csk_accept,
            .ioctl            = tcp_ioctl,
            .init            = tcp_v4_init_sock,
            .destroy        = tcp_v4_destroy_sock,
            .shutdown        = tcp_shutdown,
            .setsockopt        = tcp_setsockopt,
            .getsockopt        = tcp_getsockopt,
            .keepalive        = tcp_set_keepalive,
            .recvmsg        = tcp_recvmsg,
            .sendmsg        = tcp_sendmsg,
            .sendpage        = tcp_sendpage,
            .backlog_rcv        = tcp_v4_do_rcv,
            .release_cb        = tcp_release_cb,
            .hash            = inet_hash,
            .unhash            = inet_unhash,
            .get_port        = inet_csk_get_port,
            .enter_memory_pressure    = tcp_enter_memory_pressure,
            .leave_memory_pressure    = tcp_leave_memory_pressure,
            .stream_memory_free    = tcp_stream_memory_free,
            .sockets_allocated    = &tcp_sockets_allocated,
            .orphan_count        = &tcp_orphan_count,
            .memory_allocated    = &tcp_memory_allocated,
            .memory_pressure    = &tcp_memory_pressure,
            .sysctl_mem        = sysctl_tcp_mem,
            .sysctl_wmem_offset    = offsetof(struct net, ipv4.sysctl_tcp_wmem),
            .sysctl_rmem_offset    = offsetof(struct net, ipv4.sysctl_tcp_rmem),
            .max_header        = MAX_TCP_HEADER,
            .obj_size        = sizeof(struct tcp_sock),
            .slab_flags        = SLAB_TYPESAFE_BY_RCU,
            .twsk_prot        = &tcp_timewait_sock_ops,
            .rsk_prot        = &tcp_request_sock_ops,
            .h.hashinfo        = &tcp_hashinfo,
            .no_autobind        = true,
        #ifdef CONFIG_COMPAT
            .compat_setsockopt    = compat_tcp_setsockopt,
            .compat_getsockopt    = compat_tcp_getsockopt,
        #endif
            .diag_destroy        = tcp_abort,
        };

      在这里,我们可以看到socket接口层里sock->opt->connect和sock->opt->accept实际调用的函数tcp_v4_connect和inet_csk_accept。

    2.接下来通过MenuOS的内核调试环境设置断点跟踪tcp_v4_connect函数和inet_csk_accept函数来进一步验证三次握手的过程。

      在tcp_v4_connect处打个断点:

      可以发现tcp_v4_connect函数在net/ipv4/tcp_ipv4.c处定义,看下代码:

    /* This will initiate an outgoing connection. */
        int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
        {
            struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
            struct inet_sock *inet = inet_sk(sk);
            struct tcp_sock *tp = tcp_sk(sk);
            __be16 orig_sport, orig_dport;
            __be32 daddr, nexthop;
            struct flowi4 *fl4;
            struct rtable *rt;
            int err;
            struct ip_options_rcu *inet_opt;
            struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
        
    
            if (addr_len < sizeof(struct sockaddr_in))
                return -EINVAL;
        
    
            if (usin->sin_family != AF_INET)
                return -EAFNOSUPPORT;
        
    
            nexthop = daddr = usin->sin_addr.s_addr;
            inet_opt = rcu_dereference_protected(inet->inet_opt,
                                 lockdep_sock_is_held(sk));
            if (inet_opt && inet_opt->opt.srr) {
                if (!daddr)
                    return -EINVAL;
                nexthop = inet_opt->opt.faddr;
            }
        
    
            orig_sport = inet->inet_sport;
            orig_dport = usin->sin_port;
            fl4 = &inet->cork.fl.u.ip4;
            rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
                          RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
                          IPPROTO_TCP,
                          orig_sport, orig_dport, sk);
            if (IS_ERR(rt)) {
                err = PTR_ERR(rt);
                if (err == -ENETUNREACH)
                    IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
                return err;
            }
        
    
            if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
                ip_rt_put(rt);
                return -ENETUNREACH;
            }
        
    
            if (!inet_opt || !inet_opt->opt.srr)
                daddr = fl4->daddr;
        
    
            if (!inet->inet_saddr)
                inet->inet_saddr = fl4->saddr;
            sk_rcv_saddr_set(sk, inet->inet_saddr);
        
    
            if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
                /* Reset inherited state */
                tp->rx_opt.ts_recent       = 0;
                tp->rx_opt.ts_recent_stamp = 0;
                if (likely(!tp->repair))
                    tp->write_seq       = 0;
            }
        
    
            inet->inet_dport = usin->sin_port;
            sk_daddr_set(sk, daddr);
        
    
            inet_csk(sk)->icsk_ext_hdr_len = 0;
            if (inet_opt)
                inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
        
    
            tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
        
    
            /* Socket identity is still unknown (sport may be zero).
             * However we set state to SYN-SENT and not releasing socket
             * lock select source port, enter ourselves into the hash tables and
             * complete initialization after this.
             */
            tcp_set_state(sk, TCP_SYN_SENT);
            err = inet_hash_connect(tcp_death_row, sk);
            if (err)
                goto failure;
        
    
            sk_set_txhash(sk);
        
    
            rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
                           inet->inet_sport, inet->inet_dport, sk);
            if (IS_ERR(rt)) {
                err = PTR_ERR(rt);
                rt = NULL;
                goto failure;
            }
            /* OK, now commit destination to socket.  */
            sk->sk_gso_type = SKB_GSO_TCPV4;
            sk_setup_caps(sk, &rt->dst);
            rt = NULL;
        
    
            if (likely(!tp->repair)) {
                if (!tp->write_seq)
                    tp->write_seq = secure_tcp_seq(inet->inet_saddr,
                                       inet->inet_daddr,
                                       inet->inet_sport,
                                       usin->sin_port);
                tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
                                 inet->inet_saddr,
                                 inet->inet_daddr);
            }
        
    
            inet->inet_id = tp->write_seq ^ jiffies;
        
    
            if (tcp_fastopen_defer_connect(sk, &err))
                return err;
            if (err)
                goto failure;
        
    
            err = tcp_connect(sk);
        
    
            if (err)
                goto failure;
        
    
            return 0;
        
    
        failure:
            /*
             * This unhashes the socket and releases the local port,
             * if necessary.
             */
            tcp_set_state(sk, TCP_CLOSE);
            ip_rt_put(rt);
            sk->sk_route_caps = 0;
            inet->inet_dport = 0;
            return err;
        }

      分析代码,可以看出tcp_v4_connect函数的主要作用就是发起一个TCP连接,从这个函数中可以看到它调用了IP层提供的一些服务,比如ip_route_connect和ip_route_newports,同时在tcp_v4_connect函数中,调用了tcp_set_state函数,它设置了TCP_SYN_SENT,并进一步调用了tcp_connect(sk)来实际构造SYN并发送出去。

      tcp_connect函数具体负责构造一个携带SYN标志位的TCP头并发送出去,同时还设置了计时器超时重发。这个函数定义在net/ipv4/tcp_output.c文件中,看看代码:

    /* Build a SYN and send it off. */
        int tcp_connect(struct sock *sk)
        {
            struct tcp_sock *tp = tcp_sk(sk);
            struct sk_buff *buff;
            int err;
        
    
            tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
        
    
            if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
                return -EHOSTUNREACH; /* Routing failure or similar. */
        
    
            tcp_connect_init(sk);
        
    
            if (unlikely(tp->repair)) {
                tcp_finish_connect(sk, NULL);
                return 0;
            }
        
    
            buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
            if (unlikely(!buff))
                return -ENOBUFS;
        
    
            tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
            tcp_mstamp_refresh(tp);
            tp->retrans_stamp = tcp_time_stamp(tp);
            tcp_connect_queue_skb(sk, buff);
            tcp_ecn_send_syn(sk, buff);
            tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
        
    
            /* Send off SYN; include data in Fast Open. */
            err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
                  tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
            if (err == -ECONNREFUSED)
                return err;
        
    
            /* We change tp->snd_nxt after the tcp_transmit_skb() call
             * in order to make this packet get counted in tcpOutSegs.
             */
            tp->snd_nxt = tp->write_seq;
            tp->pushed_seq = tp->write_seq;
            buff = tcp_send_head(sk);
            if (unlikely(buff)) {
                tp->snd_nxt    = TCP_SKB_CB(buff)->seq;
                tp->pushed_seq    = TCP_SKB_CB(buff)->seq;
            }
            TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
        
    
            /* Timer for repeating the SYN until an answer. */
            inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
                          inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
            return 0;
        }
        EXPORT_SYMBOL(tcp_connect);

      其中tcp_transmit_skb函数将tcp数据发送出去。

      这边,客户端的一个tcp数据包发送出去了,服务端将做出什么反应呢,下面来看看服务端的inet_csk_accept函数,首先在inet_csk_accept处打上断点:

      inet_csk_accept函数在net/ipv4/inet_connection_sock.c文件中:

        
    /*
         * This will accept the next outstanding connection.
         */
        struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
        {
            struct inet_connection_sock *icsk = inet_csk(sk);
            struct request_sock_queue *queue = &icsk->icsk_accept_queue;
            struct request_sock *req;
            struct sock *newsk;
            int error;
        
    
            lock_sock(sk);
        
    
            /* We need to make sure that this socket is listening,
             * and that it has something pending.
             */
            error = -EINVAL;
            if (sk->sk_state != TCP_LISTEN)
                goto out_err;
        
    
            /* Find already established connection */
            if (reqsk_queue_empty(queue)) {
                long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
        
    
                /* If this is a non blocking socket don't sleep */
                error = -EAGAIN;
                if (!timeo)
                    goto out_err;
        
    
                error = inet_csk_wait_for_connect(sk, timeo);
                if (error)
                    goto out_err;
            }
            req = reqsk_queue_remove(queue, sk);
            newsk = req->sk;
        
    
            if (sk->sk_protocol == IPPROTO_TCP &&
                tcp_rsk(req)->tfo_listener) {
                spin_lock_bh(&queue->fastopenq.lock);
                if (tcp_rsk(req)->tfo_listener) {
                    /* We are still waiting for the final ACK from 3WHS
                     * so can't free req now. Instead, we set req->sk to
                     * NULL to signify that the child socket is taken
                     * so reqsk_fastopen_remove() will free the req
                     * when 3WHS finishes (or is aborted).
                     */
                    req->sk = NULL;
                    req = NULL;
                }
                spin_unlock_bh(&queue->fastopenq.lock);
            }
        out:
            release_sock(sk);
            if (req)
                reqsk_put(req);
            return newsk;
        out_err:
            newsk = NULL;
            req = NULL;
            *err = error;
            goto out;
        }
        EXPORT_SYMBOL(inet_csk_accept);
        

      服务端的inet_csk_accept函数会从请求队列中取出一个连接请求,如果队列为空则通过inet_csk_wait_for_connect阻塞住等待客户端的连接。

      inet_csk_wait_for_connect函数定义在net/ipv4/inet_connection_sock.c文件中:

    static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
    {
        struct inet_connection_sock *icsk = inet_csk(sk);
        DEFINE_WAIT(wait);
        int err;
        for (;;) {
            prepare_to_wait_exclusive(sk_sleep(sk), &wait,
                          TASK_INTERRUPTIBLE);
            release_sock(sk);
            if (reqsk_queue_empty(&icsk->icsk_accept_queue))
                timeo = schedule_timeout(timeo);
            sched_annotate_sleep();
            lock_sock(sk);
            err = 0;
            if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
                break;
            err = -EINVAL;
            if (sk->sk_state != TCP_LISTEN)
                break;
            err = sock_intr_errno(timeo);
            if (signal_pending(current))
                break;
            err = -EAGAIN;
            if (!timeo)
                break;
        }
        finish_wait(sk_sleep(sk), &wait);
        return err;
    }

      观察函数恍然大悟,所谓的队列为空则阻塞住等待客户端的连接,就是指的函数中的for循环,一旦有请求进来则跳出循环。

      根据代码可以分析出整个三次握手的过程为:客户端通过tcp_v4_connect函数调用到tcp_connect函数,将请求发送数据包出去,服务器端则通过inet_csk_accept函数调用inet_csk_wait_for_connect函数中的for循环进入阻塞,直到监听到请求才跳出循环。connect启动到返回和accept返回之间就是所谓三次握手的时间。

    3.三次握手中携带SYN/ACK的TCP头数据的发送和接收

      以上分析了用户程序调用socket接口、通过系统调用陷入内核进入内核态的socket接口层代码,然后根据创建socket时指定协议选择适当的函数指针进入协议处理代码中。那么网卡接收到数据后是如何通知上层协议来接收并处理数据的呢。其实在TCP/IP协议栈的初始化过程中,协议栈将handler赋值为tcp_v4_rcv的函数指针,也就是TCP协议中负责接收处理数据的入口,接收TCP连接请求及进行三次握手处理过程也都是从这里开始。

      内核在处理接收到的TCP报文时使用了4个队列容器,分别为receive、out_of_order、prequeue、backlog队列。当网卡接收到报文并判断为TCP协议后,将会调用到内核的tcp_v4_rcv方法。tcp_v4_rcv方法会把这个报文直接插入到receive队列中。

      在该函数定义在net/ipv4/tcp_ipv4.c文件中:

        
    /*
         *    From tcp_input.c
         */
        
    
        int tcp_v4_rcv(struct sk_buff *skb)
        {
            struct net *net = dev_net(skb->dev);
            int sdif = inet_sdif(skb);
            const struct iphdr *iph;
            const struct tcphdr *th;
            bool refcounted;
            struct sock *sk;
            int ret;
        
    
            if (skb->pkt_type != PACKET_HOST)
                goto discard_it;
        
    
            /* Count it even if it's bad */
            __TCP_INC_STATS(net, TCP_MIB_INSEGS);
        
    
            if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
                goto discard_it;
        
    
            th = (const struct tcphdr *)skb->data;
        
    
            if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
                goto bad_packet;
            if (!pskb_may_pull(skb, th->doff * 4))
                goto discard_it;
        
    
            /* An explanation is required here, I think.
             * Packet length and doff are validated by header prediction,
             * provided case of th->doff==0 is eliminated.
             * So, we defer the checks. */
        
    
            if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
                goto csum_error;
        
    
            th = (const struct tcphdr *)skb->data;
            iph = ip_hdr(skb);
        lookup:
            sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
                           th->dest, sdif, &refcounted);
            if (!sk)
                goto no_tcp_socket;
        
    
        process:
            if (sk->sk_state == TCP_TIME_WAIT)
                goto do_time_wait;
        
    
            if (sk->sk_state == TCP_NEW_SYN_RECV) {
                struct request_sock *req = inet_reqsk(sk);
                bool req_stolen = false;
                struct sock *nsk;
        
    
                sk = req->rsk_listener;
                if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
                    sk_drops_add(sk, skb);
                    reqsk_put(req);
                    goto discard_it;
                }
                if (tcp_checksum_complete(skb)) {
                    reqsk_put(req);
                    goto csum_error;
                }
                if (unlikely(sk->sk_state != TCP_LISTEN)) {
                    inet_csk_reqsk_queue_drop_and_put(sk, req);
                    goto lookup;
                }
                /* We own a reference on the listener, increase it again
                 * as we might lose it too soon.
                 */
                sock_hold(sk);
                refcounted = true;
                nsk = NULL;
                if (!tcp_filter(sk, skb)) {
                    th = (const struct tcphdr *)skb->data;
                    iph = ip_hdr(skb);
                    tcp_v4_fill_cb(skb, iph, th);
                    nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
                }
                if (!nsk) {
                    reqsk_put(req);
                    if (req_stolen) {
                        /* Another cpu got exclusive access to req
                         * and created a full blown socket.
                         * Try to feed this packet to this socket
                         * instead of discarding it.
                         */
                        tcp_v4_restore_cb(skb);
                        sock_put(sk);
                        goto lookup;
                    }
                    goto discard_and_relse;
                }
                if (nsk == sk) {
                    reqsk_put(req);
                    tcp_v4_restore_cb(skb);
                } else if (tcp_child_process(sk, nsk, skb)) {
                    tcp_v4_send_reset(nsk, skb);
                    goto discard_and_relse;
                } else {
                    sock_put(sk);
                    return 0;
                }
            }
            if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
                __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
                goto discard_and_relse;
            }
        
    
            if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
                goto discard_and_relse;
        
    
            if (tcp_v4_inbound_md5_hash(sk, skb))
                goto discard_and_relse;
        
    
            nf_reset(skb);
        
    
            if (tcp_filter(sk, skb))
                goto discard_and_relse;
            th = (const struct tcphdr *)skb->data;
            iph = ip_hdr(skb);
            tcp_v4_fill_cb(skb, iph, th);
        
    
            skb->dev = NULL;
        
    
            if (sk->sk_state == TCP_LISTEN) {
                ret = tcp_v4_do_rcv(sk, skb);
                goto put_and_return;
            }
        
    
            sk_incoming_cpu_update(sk);
        
    
            bh_lock_sock_nested(sk);
            tcp_segs_in(tcp_sk(sk), skb);
            ret = 0;
            if (!sock_owned_by_user(sk)) {
                ret = tcp_v4_do_rcv(sk, skb);
            } else if (tcp_add_backlog(sk, skb)) {
                goto discard_and_relse;
            }
            bh_unlock_sock(sk);
        
    
        put_and_return:
            if (refcounted)
                sock_put(sk);
        
    
            return ret;
        
    
        no_tcp_socket:
            if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
                goto discard_it;
        
    
            tcp_v4_fill_cb(skb, iph, th);
        
    
            if (tcp_checksum_complete(skb)) {
        csum_error:
                __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
        bad_packet:
                __TCP_INC_STATS(net, TCP_MIB_INERRS);
            } else {
                tcp_v4_send_reset(NULL, skb);
            }
        
    
        discard_it:
            /* Discard frame. */
            kfree_skb(skb);
            return 0;
        
    
        discard_and_relse:
            sk_drops_add(sk, skb);
            if (refcounted)
                sock_put(sk);
            goto discard_it;
        
    
        do_time_wait:
            if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
                inet_twsk_put(inet_twsk(sk));
                goto discard_it;
            }
        
    
            tcp_v4_fill_cb(skb, iph, th);
        
    
            if (tcp_checksum_complete(skb)) {
                inet_twsk_put(inet_twsk(sk));
                goto csum_error;
            }
            switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
            case TCP_TW_SYN: {
                struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
                                    &tcp_hashinfo, skb,
                                    __tcp_hdrlen(th),
                                    iph->saddr, th->source,
                                    iph->daddr, th->dest,
                                    inet_iif(skb),
                                    sdif);
                if (sk2) {
                    inet_twsk_deschedule_put(inet_twsk(sk));
                    sk = sk2;
                    tcp_v4_restore_cb(skb);
                    refcounted = false;
                    goto process;
                }
            }
                /* to ACK */
                /* fall through */
            case TCP_TW_ACK:
                tcp_v4_timewait_ack(sk, skb);
                break;
            case TCP_TW_RST:
                tcp_v4_send_reset(sk, skb);
                inet_twsk_deschedule_put(inet_twsk(sk));
                goto discard_it;
            case TCP_TW_SUCCESS:;
            }
            goto discard_it;
        }
        

      tcp_v4_rcv函数只要做以下几个工作:

      (1) 设置TCP_CB

      (2) 查找控制块

      (3)根据控制块状态做不同处理,包括TCP_TIME_WAIT状态处理,TCP_NEW_SYN_RECV状态处理,TCP_LISTEN状态处理

      (4) 接收TCP段

      以上完成了将接收数据放入accept队列中,之后服务端接收客户端发来的tcp报文,并发送回SYN+ACK。

      这里用到的是tcp_v4_do_rcv函数,其定义在net/ipv4/tcp_ipv4.c文件中:

    /* The socket must have it's spinlock held when we get
         * here, unless it is a TCP_LISTEN socket.
         *
         * We have a potential double-lock case here, so even when
         * doing backlog processing we use the BH locking scheme.
         * This is because we cannot sleep with the original spinlock
         * held.
         */
        int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
        {
            struct sock *rsk;
        
    
            if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
                struct dst_entry *dst = sk->sk_rx_dst;
        
    
                sock_rps_save_rxhash(sk, skb);
                sk_mark_napi_id(sk, skb);
                if (dst) {
                    if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
                        !dst->ops->check(dst, 0)) {
                        dst_release(dst);
                        sk->sk_rx_dst = NULL;
                    }
                }
                tcp_rcv_established(sk, skb);
                return 0;
            }
        
    
            if (tcp_checksum_complete(skb))
                goto csum_err;
        
    
            if (sk->sk_state == TCP_LISTEN) {
                struct sock *nsk = tcp_v4_cookie_check(sk, skb);
        
    
                if (!nsk)
                    goto discard;
                if (nsk != sk) {
                    if (tcp_child_process(sk, nsk, skb)) {
                        rsk = nsk;
                        goto reset;
                    }
                    return 0;
                }
            } else
                sock_rps_save_rxhash(sk, skb);
        
    
            if (tcp_rcv_state_process(sk, skb)) {
                rsk = sk;
                goto reset;
            }
            return 0;
        
    
        reset:
            tcp_v4_send_reset(rsk, skb);
        discard:
            kfree_skb(skb);
            /* Be careful here. If this function gets more complicated and
             * gcc suffers from register pressure on the x86, sk (in %ebx)
             * might be destroyed here. This current version compiles correctly,
             * but you have been warned.
             */
            return 0;
        
    
        csum_err:
            TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
            TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
            goto discard;
        }
        EXPORT_SYMBOL(tcp_v4_do_rcv);

      首先函数检查当前是否处于半连接状态,并调用tcp_v4_hnd_req检查报文的状态字段,再针对报文类型调用不同函数进行处理,若是SYN报文,则调用tcp_rcv_state_process函数,进入到下一阶段,客户端收到服务端的SYN+ACK,并发送ACK。

      tcp_rcv_state_process函数定义在net/ipv4/tcp_input.c文件中:

      /*
         *    This function implements the receiving procedure of RFC 793 for
         *    all states except ESTABLISHED and TIME_WAIT.
         *    It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
         *    address independent.
         */
        
    
        int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
        {
            struct tcp_sock *tp = tcp_sk(sk);
            struct inet_connection_sock *icsk = inet_csk(sk);
            const struct tcphdr *th = tcp_hdr(skb);
            struct request_sock *req;
            int queued = 0;
            bool acceptable;
        
    
            switch (sk->sk_state) {
            case TCP_CLOSE:
                goto discard;
        
    
            case TCP_LISTEN:
                if (th->ack)
                    return 1;
        
    
                if (th->rst)
                    goto discard;
        
    
                if (th->syn) {
                    if (th->fin)
                        goto discard;
                    /* It is possible that we process SYN packets from backlog,
                     * so we need to make sure to disable BH and RCU right there.
                     */
                    rcu_read_lock();
                    local_bh_disable();
                    acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
                    local_bh_enable();
                    rcu_read_unlock();
        
    
                    if (!acceptable)
                        return 1;
                    consume_skb(skb);
                    return 0;
                }
                goto discard;
        
    
            case TCP_SYN_SENT:
                tp->rx_opt.saw_tstamp = 0;
                tcp_mstamp_refresh(tp);
                queued = tcp_rcv_synsent_state_process(sk, skb, th);
                if (queued >= 0)
                    return queued;
        
    
                /* Do step6 onward by hand. */
                tcp_urg(sk, skb, th);
                __kfree_skb(skb);
                tcp_data_snd_check(sk);
                return 0;
            }
        
    
            tcp_mstamp_refresh(tp);
            tp->rx_opt.saw_tstamp = 0;
            req = tp->fastopen_rsk;
            if (req) {
                bool req_stolen;
        
    
                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
                    sk->sk_state != TCP_FIN_WAIT1);
        
    
                if (!tcp_check_req(sk, skb, req, true, &req_stolen))
                    goto discard;
            }
        
    
            if (!th->ack && !th->rst && !th->syn)
                goto discard;
        
    
            if (!tcp_validate_incoming(sk, skb, th, 0))
                return 0;
        
    
            /* step 5: check the ACK field */
            acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
                              FLAG_UPDATE_TS_RECENT |
                              FLAG_NO_CHALLENGE_ACK) > 0;
        
    
            if (!acceptable) {
                if (sk->sk_state == TCP_SYN_RECV)
                    return 1;    /* send one RST */
                tcp_send_challenge_ack(sk, skb);
                goto discard;
            }
            switch (sk->sk_state) {
            case TCP_SYN_RECV:
                tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
                if (!tp->srtt_us)
                    tcp_synack_rtt_meas(sk, req);
        
    
                /* Once we leave TCP_SYN_RECV, we no longer need req
                 * so release it.
                 */
                if (req) {
                    inet_csk(sk)->icsk_retransmits = 0;
                    reqsk_fastopen_remove(sk, req, false);
                    /* Re-arm the timer because data may have been sent out.
                     * This is similar to the regular data transmission case
                     * when new data has just been ack'ed.
                     *
                     * (TFO) - we could try to be more aggressive and
                     * retransmitting any data sooner based on when they
                     * are sent out.
                     */
                    tcp_rearm_rto(sk);
                } else {
                    tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
                    tp->copied_seq = tp->rcv_nxt;
                }
                smp_mb();
                tcp_set_state(sk, TCP_ESTABLISHED);
                sk->sk_state_change(sk);
        
    
                /* Note, that this wakeup is only for marginal crossed SYN case.
                 * Passively open sockets are not waked up, because
                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
                 */
                if (sk->sk_socket)
                    sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
        
    
                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
        
    
                if (tp->rx_opt.tstamp_ok)
                    tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
        
    
                if (!inet_csk(sk)->icsk_ca_ops->cong_control)
                    tcp_update_pacing_rate(sk);
        
    
                /* Prevent spurious tcp_cwnd_restart() on first data packet */
                tp->lsndtime = tcp_jiffies32;
        
    
                tcp_initialize_rcv_mss(sk);
                tcp_fast_path_on(tp);
                break;
        
    
            case TCP_FIN_WAIT1: {
                int tmo;
        
    
                /* If we enter the TCP_FIN_WAIT1 state and we are a
                 * Fast Open socket and this is the first acceptable
                 * ACK we have received, this would have acknowledged
                 * our SYNACK so stop the SYNACK timer.
                 */
                if (req) {
                    /* We no longer need the request sock. */
                    reqsk_fastopen_remove(sk, req, false);
                    tcp_rearm_rto(sk);
                }
                if (tp->snd_una != tp->write_seq)
                    break;
        
    
                tcp_set_state(sk, TCP_FIN_WAIT2);
                sk->sk_shutdown |= SEND_SHUTDOWN;
        
    
                sk_dst_confirm(sk);
        
    
                if (!sock_flag(sk, SOCK_DEAD)) {
                    /* Wake up lingering close() */
                    sk->sk_state_change(sk);
                    break;
                }
        
    
                if (tp->linger2 < 0) {
                    tcp_done(sk);
                    NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
                    return 1;
                }
                if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
                    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
                    /* Receive out of order FIN after close() */
                    if (tp->syn_fastopen && th->fin)
                        tcp_fastopen_active_disable(sk);
                    tcp_done(sk);
                    NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
                    return 1;
                }
        
    
                tmo = tcp_fin_time(sk);
                if (tmo > TCP_TIMEWAIT_LEN) {
                    inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
                } else if (th->fin || sock_owned_by_user(sk)) {
                    /* Bad case. We could lose such FIN otherwise.
                     * It is not a big problem, but it looks confusing
                     * and not so rare event. We still can lose it now,
                     * if it spins in bh_lock_sock(), but it is really
                     * marginal case.
                     */
                    inet_csk_reset_keepalive_timer(sk, tmo);
                } else {
                    tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
                    goto discard;
                }
                break;
            }
        
    
            case TCP_CLOSING:
                if (tp->snd_una == tp->write_seq) {
                    tcp_time_wait(sk, TCP_TIME_WAIT, 0);
                    goto discard;
                }
                break;
        
    
            case TCP_LAST_ACK:
                if (tp->snd_una == tp->write_seq) {
                    tcp_update_metrics(sk);
                    tcp_done(sk);
                    goto discard;
                }
                break;
            }
        
    
            /* step 6: check the URG bit */
            tcp_urg(sk, skb, th);
        
    
            /* step 7: process the segment text */
            switch (sk->sk_state) {
            case TCP_CLOSE_WAIT:
            case TCP_CLOSING:
            case TCP_LAST_ACK:
                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
                    break;
                /* fall through */
            case TCP_FIN_WAIT1:
            case TCP_FIN_WAIT2:
                /* RFC 793 says to queue data in these states,
                 * RFC 1122 says we MUST send a reset.
                 * BSD 4.4 also does reset.
                 */
                if (sk->sk_shutdown & RCV_SHUTDOWN) {
                    if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
                        after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
                        tcp_reset(sk);
                        return 1;
                    }
                }
                /* Fall through */
            case TCP_ESTABLISHED:
                tcp_data_queue(sk, skb);
                queued = 1;
                break;
            }
        
    
            /* tcp_data could move socket to TIME-WAIT */
            if (sk->sk_state != TCP_CLOSE) {
                tcp_data_snd_check(sk);
                tcp_ack_snd_check(sk);
            }
        
    
            if (!queued) {
        discard:
                tcp_drop(sk, skb);
            }
            return 0;
        }
        EXPORT_SYMBOL(tcp_rcv_state_process);

      当前客户端处于TCP_SYN_SENT状态,并调用tcp_rcv_synsent_state_process处理SYN_SENT状态下接收到的TCP段,发送ACK报文  

      到这里,三次握手期间tcp接收处理数据包的过程基本完成。

  • 相关阅读:
    机器博弈中的数据结构与基本方法(三)-----博弈树的搜索之九宫重排问题
    机器博弈中的数据结构与基本方法(二)-----递归及回溯法实例
    机器博弈中的数据结构与基本方法(一)-----总结
    浅析基本AI五子棋算法
    数据结构算法C语言实现(三十一)--- 8.3边界标识法
    数据结构算法C语言实现(三十)--- 7.6最短路径
    数据结构算法C语言实现(二十九)--- 7.5有向无环图及其应用
    数据结构算法C语言实现(二十八)--- 7.4图的连通性问题
    数据结构算法C语言实现(二十七)--- 7.2图的遍历
    数据结构算法C语言实现(二十六)--- 7.2图的存储结构
  • 原文地址:https://www.cnblogs.com/yll333/p/12093603.html
Copyright © 2011-2022 走看看