推推柿子,得到答案是这个东东(我果然对莫比乌斯反演还不够熟悉啊QAQ)
[sum_{d=1}^n d^d sum_{x=1}^{lfloor frac{n}{d}
floor} mu(x) cdot x^{2d} sum_{i=1}^{lfloor frac{n}{dx}
floor} i^d sum_{j=1}^{lfloor frac{m}{dx}
floor} j^d
]
(好累啊这个柿子好复杂,我就不写过程了)
然后暴力求,稍微处理一下后面那两坨东西,就是 (O(nlogn)) 啦。
一开始预处理后面那两坨东西直接快速幂就多了个log,作为信仰型选手直接交了发结果T了QAQ
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define LL long long
#define re register
#define fr(i,x,y) for(re int i=(x),z=y;i<=z;i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
using namespace tr1;
const int N=500005;
const int INF=2147483647;
const int p=1e9+7;
int n,m;
int mu[N],b[N],L,pri[N];
void read(int &x){
char ch=getchar();x=0;
for(;ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
}
inline void Add(LL &x,LL y){
x+=y;
while(x<0) x+=p;
while(x>=p) x-=p;
}
inline LL qpow(LL a,int n){
LL ans=1;
for(LL sum=a;n;n>>=1,sum=sum*sum%p) if (n&1) ans=ans*sum%p;
return ans;
}
void init(){
mu[1]=1;
frl(i,2,N){
if (!b[i]) pri[++L]=i,mu[i]=-1;
for(int j=1;j<=L&&i*pri[j]<N;j++){
b[i*pri[j]]=1;
if (i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
}
LL sum[N],pw[N];
int main(){
init();
read(n);read(m);
if (n>m) swap(n,m);
LL ans=0;
fr(i,1,m) pw[i]=1;
fr(i,1,n){
//LL sum1=0,sum2=0;
fr(j,1,m/i) sum[j]=(sum[j-1]+pw[j]*j%p)%p,pw[j]=pw[j]*j%p;
//Add(ans,sum1*sum2%p*qpow(i,i)%p);
LL s=0;
fr(j,1,n/i)
Add(s,mu[j]*qpow(sum[j]-sum[j-1],2)%p*sum[n/i/j]%p*sum[m/i/j]%p);
Add(ans,s*qpow(i,i)%p);
}
cout<<ans<<endl;
return 0;
}