zoukankan      html  css  js  c++  java
  • 卡特兰数(Catalan)简介

    Catalan序列是一个整数序列,其通项公式是

    h(n)=C(2n,n)/(n+1) (n=0,1,2,...)

    其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452

    (从0开始)

    递推:

    h(0)=1,h(1)=1,catalan数满足递推式[1]
    h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
    例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
    h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
    另类递推式[2]
    h(n)=h(n-1)*(4*n-2)/(n+1);
    递推关系的解为:
    h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
    递推关系的另类解为:
    h(n)=c(2n,n)-c(2n,n+1)(n=0,1,2,...)
     

    Catalan数的一些性质

    基本公式:

    C_n = /frac{1}{n+1}{2n/choose n} = /frac{(2n)!}{(n+1)!/,n!} /quad n/ge 0

    Catalan数的基本公式就是上个部分所列出的那样,但是却有一些变形和具体的性质:

    1、C_n = {2n/choose n} - {2n/choose n+1} /quad n/ge 0

    这是根据原来的式子推导出来的,大概过程是这样的:

    C_n = /frac{1}{n+1}{2n/choose n} = {2n/choose n} -  /frac{n}{n+1}{2n/choose n} = {2n/choose n} -  {2n/choose n + 1}

    2、C_0 = 1 /quad , /quad C_{n+1}=/frac{2(2n+1)}{n+2}C_n

    这个递推式很容易可以从原来的式子中获得

    3、/begin{displaymath}C_0 = 1 /quad , /quad C_{n+1}=/sum_{i=0}^{n}C_i/,C_{n-i}/quad n/ge 0/end{displaymath}

    4、/begin{displaymath}C_n= /frac 1{n+1} /sum_{i=0}^n {n /choose i}^2/end{displaymath}

    5、/begin{displaymath}C_n /sim /frac{4^n}{n^{/frac{3}{2}}/sqrt{/pi}}/end{displaymath}

    这个是Catalan数的增长趋势。

    在《组合数学》(机械工业出版社)一书中,介绍Catalan数是由其一个应用推导出的公式,其具体的描述如下:

    n个+1和n个-1构成2n项a_1,a_2,...,a_n,其部分和满足a_1 + a_2 + ... + a_k /ge 0 /quad , /quad 0 /le k /le 2n的序列个数等于第n个Catalan数C_n

    其证明也不难,我们假设不满足条件的序列个数为U_n,那么就有C_n + U_n = {2n /choose n}。剩下的工作就是求U_n了,我们假设有一个最小的k令a_1 + a_2 + ... + a_k < 0。由于这里k是最小的,所以必有a_1 + a_2 + ... + a_{k - 1} = 0 /quad , /quad a_k = -1,并且k是一个奇数。此时我们将前k项中的+1变为-1,将-1变为+1,那么就得到一个有(n+1)个+1和(n-1)个-1的序列了,这样的序列个数就是我们要求的U_n,数值大小为 U_n = {2n/choose n + 1}。那么我们就得到了C_n = {2n/choose n} - U_n = {2n/choose n} - {2n/choose n + 1}}},就是我们前面的公式。

    在具体的组合数问题中,很多都可以转换为Catalan数进行最后的计算,如下:

    1、如上文所说,对于任意的k,前k个元素中-1的个数小等于+1的个数的序列计数,我们可以不停地变换形式,比如将-1看成右括号,+1看成左括号,就变成了合法括号表达式的个数。比如2个左括号和2个右括号组成的合法表达式有C_2 = 2种,是()()和(())。

    2、既然如上一点都把括号加上去了,那么顺便就再次转换,n+1个数连乘,乘法顺序有C_n种,比如我们三个数连乘a*b*c,那么等于在式子上加括号,有2种乘法顺序,分别是(ab)c和a(bc)。貌似对应关系比较模糊,我们取n为3来看看,n为3的时候就是4个数相乘了,那么我们设为abcd,最初的标号定在a上,我们对于n为3得到合法的括号序列有5个,分别是:((())),()(()),()()(),(())()和(()()),那么我们将一个左括号看成是当前操作数指针往右移动一个位置,一个右括号看成是当前操作数和左边最近的一块操作数相乘起来,那么对应的五个表达式就是:a(b(cd)),(ab)(cd),((ab)c)d,(a(bc))d和a((bc)d),他们之间是一一对应关系。

    转自:http://www.cnblogs.com/muzinian/archive/2012/11/08/2761430.html

    组合数学中有非常多.的组合结构可以用卡塔兰数来计数。在Richard P. Stanley的Enumerative Combinatorics: Volume 2一书的习题中包括了66个相异的可由卡塔兰数表达的组合结构。以下用Cn=3和Cn=4举若干例:

    • Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的前缀字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:
    XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY
    • 将上例的X换成左括号,Y换成右括号Cn表示所有包含n组括号的合法运算式的个数:
    ((())) ()(()) ()()() (())() (()())(这里n=3,为5个)
    • Cn表示n个节点组成不同构二叉树的方案数
    • 下图中,n等于3,圆形表示节点,月牙形表示什么都没有。
    • Cn表示有2n+1个节点组成不同构满二叉树full binary tree)的方案数。下图中,n等于3,圆形表示内部节点,月牙形表示外部节点。本质同上。

    证明:

    令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数(也就是1的个数>=0的个数)。显然含n个1、n个0的2n位二进制数共有个,下面考虑不满足要求的数目。

    考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

    从而

    证毕。

    Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数: X代表“向右”,Y代表“向上”。下图为n = 4的情况:

    Cn表示通过连结顶点而将n + 2边的凸多边形分成三角形的方法个数。下图中为n = 4的情况:

    • Cn表示对{1, ..., n}依序进出置换个数。一个置换w是依序进出栈的当S(w) = (1, ..., n), 其中S(w)递归定义如下:令w = unv,其中nw的最大元素,uv为更短的数列;再令S(w) = S(u)S(v)n,其中S为所有含一个元素的数列的单位元。
    • Cn表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。下图为 n = 4的情况:

    转自:http://zh.wikipedia.org/wiki/%E5%8D%A1%E5%A1%94%E5%85%B0%E6%95%B0

    括号化问题   如,矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n-1)种)

    出栈次序问题  
    1、一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?

    出栈次序

    一个(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列
    分析:为1时只有1中,为2时有2中,为3时,设三个数为x1,x2,x3,序列有:
    x1 x2 x3
    x1 x3 x2
    x2 x1 x3
    x2 x3 x1
    x3 x2 x1
    (不存在x3,x1,x2) 因为x3是第一个先出栈的,必然栈里面的为x1,x2,)
    常规分析
    首先,我们设f(n)=序列个数为n的出栈序列种数。同时,我们假定,从开始到栈第一次出到空为止,这段过程中第一个出栈的序数是k。特别地,如果栈直到整个过程结束时才空,则k=n
    首次出空之前第一个出栈的序数k将1~n的序列分成两个序列,其中一个是1~k-1,序列个数为k-1,另外一个是k+1~n,序列个数是n-k。
    此时,我们若把k视为确定一个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的f(n)=f(k-1)×f(n-k)。而k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f(0)f(n-1)+f(1)f(n-2)+……+f(n-1)f(0)。
    看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n)= C(2n,n)/(n+1)= c(2n,n)-c(2n,n+1)(n=0,1,2,……)。
    最后,令f(0)=1,f(1)=1。
    非常规分析
    对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
    在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
    不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
    反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
    因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。
    显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)=h(n+1)。
     (可以看以前写的文章:
    输入两个整数序列。其中一个序列表示栈的push 顺序,
    判断另一个序列有没有可能是对应的pop 顺序。
    http://www.cnblogs.com/youxin/p/3295534.html)
     
     
    类似问题 买票找零
    有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出)


    2、有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)。

    将多边行划分为三角形问题  n+2是Cn ,如果是n个点的话是C(n-2)
    1、将一个凸多边形区域分成三角形区域的方法数?
    2、一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
    3、在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数? (Cn)

    给顶节点组成二叉树的问题  给定N个节点,能构成多少种不同的二叉树?

     
    一些笔试题 
    1、16个人按顺序去买烧饼,其中8个人每人身上只有一张5块钱,另外8个人每人身上只有一张10块钱。烧饼5块一个,开始时烧饼店老板身上没有钱。16个顾客互相不通气,每人只买一个。问这16个人共有多少种排列方法能避免找不开钱的情况出现。
    h(8)=16!/(8!*9!)=1430,所以总数=h(8)*8!*8!=16!/9
    2、在图书馆一共6个人在排队,3个还《面试宝典》一书,3个在借《面试宝典》一书,图书馆此时没有了面试宝典了,求他们排队的总数?
    h(3)=6!/(3!*4!)=5,所以总数=h(3)*3!*3!=180

     catalan数深入:

    http://www.cnblogs.com/wuyuegb2312/archive/2013/07/16/3016878.html#code1

  • 相关阅读:
    12_springmvc拦截器
    11_springmvc之RESTful支持
    10_springmvc JSON数据交互
    09_springmvc图片上传
    09_springmvc异常处理
    08_springmvc数据回显和@ModelAttribute注解详解
    Eclipse-----解决调试源码不进入断点问题
    JavaScript-----截取字符串的常用方法
    排序(Sort)-----冒泡排序
    SpringMVC探究-----常用获取传递参数的方法
  • 原文地址:https://www.cnblogs.com/youxin/p/3293345.html
Copyright © 2011-2022 走看看