zoukankan      html  css  js  c++  java
  • 62. Unique Paths

    题目:

    A robot is located at the top-left corner of a m x ngrid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    Above is a 3 x 7 grid. How many possible unique paths are there?

    Note: m and n will be at most 100.

    链接: http://leetcode.com/problems/unique-paths/

    题解: 

    dp的经典问题,每次向右或向下走一步。第一行或者第一列走到头只有一种方法,所以初始化为1,转移方程是dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

    Time Complexity O(m * n), Space Complexity O(m * n)。

    public class Solution {
        public int uniquePaths(int m, int n) {
            int[][] dp = new int[m][n];
            
            for(int i = 0; i < m; i ++)
                dp[i][0] = 1;
                
            for(int j = 0; j < n; j ++)
                dp[0][j] = 1;
            
            for(int i = 1; i < m; i ++){
                for(int j = 1; j < n; j++){
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
            
            return dp[m - 1][n - 1];
        }
    }

    Update:

    public class Solution {
        public int uniquePaths(int m, int n) {
            if(m == 0 || m == 0)
                return 0;
            int[][] dp = new int[m][n];
            
            for(int i = 0; i < m; i++)      // initialize first column
                dp[i][0] = 1;
                
            for(int j = 1; j < n; j++)      // initialize first row
                dp[0][j] = 1;
            
            for(int i = 1; i < m; i++) {
                for(int j = 1; j < n; j++) {
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
            
            return dp[m - 1][n - 1];
        }
    }

    二刷:

    Java:

    经典的dp,据说还可以用Math来做。我们还是使用dp。

    2D DP:

    建立一个m x n矩阵,初始化第一条边和第一列为1,然后利用转移方程res[i][j] = res[i - 1][j] + res[i][j - 1],最后返回res[m - 1][n - 1]

    Time Complexity - O(mn), Space Complexity - O(mn)

    public class Solution {
        public int uniquePaths(int m, int n) {
            if (m < 0 || n < 0) {
                return 0;
            }
            int[][] res = new int[m][n];
            for (int i = 0; i < m; i++) {
                res[i][0] = 1;
            }
            for (int j = 1; j < n; j++) {
                res[0][j] = 1;
            }
            for (int i = 1; i < m; i++) {
                for (int j = 1; j < n; j++) {
                    res[i][j] = res[i - 1][j] + res[i][j - 1];
                }
            }
            return res[m - 1][n - 1];
        }
    }

    1D DP with rolling array:

    对这种简单的DP,一般我们可以用rolling array来减少空间复杂度。我们建立一个长度为n的array,先初始化其中每个元素的值为1,然后在遍历m x n的时候,转移方程简化为 res[j] += res[j - 1], 还是之前res[i][j]左边和上边的元素。这样节约了一点空间。

    Time Complexity - O(mn), Space Complexity - O(n)

    public class Solution {
        public int uniquePaths(int m, int n) {
            if (m < 0 || n < 0) {
                return 0;
            }
            int[] res = new int[n];
            for (int j = 0; j < n; j++) {
                res[j] = 1;
            }
            for (int i = 1; i < m; i++) {
                for (int j = 1; j < n; j++) {
                    res[j] += res[j - 1];
                }
            }
            return res[n - 1];
        }
    }

    三刷:

    Java:

    2D dp:

    public class Solution {
        public int uniquePaths(int m, int n) {
            if (m < 0 || n < 0) return 0;
            int[][] dp = new int[m][n];
            for (int i = 0; i < m; i++) dp[i][0] = 1;
            for (int j = 1; j < n; j++) dp[0][j] = 1;
            
            for (int i = 1; i < m; i++) {
                for (int j = 1; j < n; j++) {
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
            return dp[m - 1][n - 1];
        }
    }

    Rolling array 1:

    public class Solution {
        public int uniquePaths(int m, int n) {
            if (m < 0 || n < 0) return 0;
            int[] dp = new int[n];
            for (int j = 0; j < n; j++) dp[j] = 1;
            
            for (int i = 1; i < m; i++) {
                for (int j = 1; j < n; j++) {
                    dp[j] += dp[j - 1];
                }
            }
            return dp[n - 1];
        }
    }

    Rolling array2: 现在才能领会到为什么我们有的时候建立dp数组要用int[] dp = new int[n + 1]。  多增加一个长度的话是为了写的时候不用对第一行赋初值,看起来比较简练,但其实时间复杂度还是一样的。

    public class Solution {
        public int uniquePaths(int m, int n) {
            if (m < 0 || n < 0) return 0;
            int[] dp = new int[n + 1];
            dp[0] = 1;
            
            for (int i = 1; i <= m; i++) {
                for (int j = 1; j <= n; j++) {
                    dp[j] += dp[j - 1];
                }
            }
            return dp[n - 1];
        }
    }

    Reference:

    https://leetcode.com/discuss/9110/my-ac-solution-using-formula

    https://leetcode.com/discuss/47829/math-solution-o-1-space

  • 相关阅读:
    Android studio ocr初级app开发问题汇总(含工程代码)
    面试题思路,25匹马 5个跑道取前三,前五,最少比赛次数--七次
    中国计算机学会推荐国际学术会议和期刊目录(CCF)2019年
    swift 数组部分排序
    SceneKit下关于修改SCNNode 的Shader展示自定义图形
    汇编语言实现字母下落效果
    组合数计算-java
    miniblast_hash算法c语言实现
    日常开发知识点备忘
    骑士周游问题跳马问题C#实现(附带WPF工程代码)
  • 原文地址:https://www.cnblogs.com/yrbbest/p/4436405.html
Copyright © 2011-2022 走看看