一、简介
Android的消息机制主要是指Handler的运行机制,那么什么是Handler的运行机制那?通俗的来讲就是,使用Handler将子线程的Message放入主线程的Messagequeue中,在主线程使用。
二、学习内容
学习Android的消息机制,我们需要先了解如下内容。
- 消息的表示:Message
- 消息队列:MessageQueue
- 消息循环,用于循环取出消息进行处理:Looper
- 消息处理,消息循环从消息队列中取出消息后要对消息进行处理:Handler
平常我们接触的大多是Handler和Message,今天就让我们来深入的了解一下他们。
三、代码详解
一般而言我们都是这样使用Handler的
xxHandler.sendEmptyMessage(xxx);
当然还有其他表示方法,但我们深入到源代码中,会发现,他们最终都调用了一个方法
public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
sendMessageAtTime()方法,但这依然不是结束,我们可以看到最后一句enqueueMessage(queue, msg, uptimeMillis);按字面意思来说插入一条消息,那么疑问来了,消息插入了哪里。
1 boolean enqueueMessage(Message msg, long when) { 2 if (msg.target == null) { 3 throw new IllegalArgumentException("Message must have a target."); 4 } 5 if (msg.isInUse()) { 6 throw new IllegalStateException(msg + " This message is already in use."); 7 } 8 9 synchronized (this) { 10 if (mQuitting) { 11 IllegalStateException e = new IllegalStateException( 12 msg.target + " sending message to a Handler on a dead thread"); 13 Log.w(TAG, e.getMessage(), e); 14 msg.recycle(); 15 return false; 16 } 17 18 msg.markInUse(); 19 msg.when = when; 20 Message p = mMessages; 21 boolean needWake; 22 if (p == null || when == 0 || when < p.when) { 23 // New head, wake up the event queue if blocked. 24 msg.next = p; 25 mMessages = msg; 26 needWake = mBlocked; 27 } else { 28 // Inserted within the middle of the queue. Usually we don't have to wake 29 // up the event queue unless there is a barrier at the head of the queue 30 // and the message is the earliest asynchronous message in the queue. 31 needWake = mBlocked && p.target == null && msg.isAsynchronous(); 32 Message prev; 33 for (;;) { 34 prev = p; 35 p = p.next; 36 if (p == null || when < p.when) { 37 break; 38 } 39 if (needWake && p.isAsynchronous()) { 40 needWake = false; 41 } 42 } 43 msg.next = p; // invariant: p == prev.next 44 prev.next = msg; 45 } 46 47 // We can assume mPtr != 0 because mQuitting is false. 48 if (needWake) { 49 nativeWake(mPtr); 50 } 51 } 52 return true; 53 }
进入源代码,我们发现,我们需要了解一个新类Messagequeue。
虽然我们一般把他叫做消息队列,但是通过研究,我们发下,它实际上是一种单链表的数据结构,而我们对它的操作主要是插入和读取。
看代码33-44,学过数据结构,我们可以轻松的看出,这是一个单链表的插入末尾的操作。
这样就明白了,我们send方法实质就是向Messagequeue中插入这么一条消息,那么另一个问题随之而来,我们该如何处理这条消息。
处理消息我们离不开一个重要的,Looper。那么它在消息机制中又有什么样的作用那?
Looper扮演着消息循环的角色,具体而言它会不停的从MessageQueue中查看是否有新消息如果有新消息就会立刻处理,否则就已知阻塞在那里,现在让我们来看一下他的代码实现。
首先是构造方法
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }
可以发现,它将当前线程对象保存了起来。我们继续
Looper在新线程创建过程中有两个重要的方法looper.prepare() looper.loop
new Thread(){ public void run(){ Looper.prepare(); Handler handler = new Handler(); Looper.loop(); } }.start();
我们先来看prepare()方法
1 private static void prepare(boolean quitAllowed) { 2 if (sThreadLocal.get() != null) { 3 throw new RuntimeException("Only one Looper may be created per thread"); 4 } 5 sThreadLocal.set(new Looper(quitAllowed)); 6 }
咦,我们可以看到这里面又有一个ThreadLocal类,我们在这简单了解一下,他的特性,set(),get()方法。
首先ThreadLocal是一个线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储后,只有在制定线程中可以获取存储的数据,对于其他线程而言则无法获取到数据。简单的来说。套用一个列子:
private ThreadLocal<Boolean> mBooleanThreadLocal = new ThreadLocal<Boolean>();// mBooleanThreadLocal.set(true); Log.d(TAH,"Threadmain"+mBooleanThreadLocal.get()); new Thread("Thread#1"){ public void run(){ mBooleanThreadLocal.set(false); Log.d(TAH,"Thread#1"+mBooleanThreadLocal.get()); }; }.start(); new Thread("Thread#2"){ public void run(){ Log.d(TAH,"Thread#2"+mBooleanThreadLocal.get()); }; }.start();
上面的代码运行后,我们会发现,每一个线程的值都是不同的,即使他们访问的是同意个ThreadLocal对象。
那么我们接下来会在之后分析源码,为什么他会不一样。现在我们跳回prepare()方法那一步,loop()方法源码贴上
1 public static void loop() { 2 final Looper me = myLooper(); 3 if (me == null) { 4 throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); 5 } 6 final MessageQueue queue = me.mQueue; 7 8 // Make sure the identity of this thread is that of the local process, 9 // and keep track of what that identity token actually is. 10 Binder.clearCallingIdentity(); 11 final long ident = Binder.clearCallingIdentity(); 12 13 for (;;) { 14 Message msg = queue.next(); // might block 15 if (msg == null) { 16 // No message indicates that the message queue is quitting. 17 return; 18 } 19 20 // This must be in a local variable, in case a UI event sets the logger 21 Printer logging = me.mLogging; 22 if (logging != null) { 23 logging.println(">>>>> Dispatching to " + msg.target + " " + 24 msg.callback + ": " + msg.what); 25 } 26 27 msg.target.dispatchMessage(msg); 28 29 if (logging != null) { 30 logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); 31 } 32 33 // Make sure that during the course of dispatching the 34 // identity of the thread wasn't corrupted. 35 final long newIdent = Binder.clearCallingIdentity(); 36 if (ident != newIdent) { 37 Log.wtf(TAG, "Thread identity changed from 0x" 38 + Long.toHexString(ident) + " to 0x" 39 + Long.toHexString(newIdent) + " while dispatching to " 40 + msg.target.getClass().getName() + " " 41 + msg.callback + " what=" + msg.what); 42 } 43 44 msg.recycleUnchecked(); 45 } 46 }
首先loop()方法,获得这个线程的Looper,若没有抛出异常。再获得新建的Messagequeue,在这里我们有必要补充一下Messagequeue的next()方法。
1 Message next() { 2 // Return here if the message loop has already quit and been disposed. 3 // This can happen if the application tries to restart a looper after quit 4 // which is not supported. 5 final long ptr = mPtr; 6 if (ptr == 0) { 7 return null; 8 } 9 10 int pendingIdleHandlerCount = -1; // -1 only during first iteration 11 int nextPollTimeoutMillis = 0; 12 for (;;) { 13 if (nextPollTimeoutMillis != 0) { 14 Binder.flushPendingCommands(); 15 } 16 17 nativePollOnce(ptr, nextPollTimeoutMillis); 18 19 synchronized (this) { 20 // Try to retrieve the next message. Return if found. 21 final long now = SystemClock.uptimeMillis(); 22 Message prevMsg = null; 23 Message msg = mMessages; 24 if (msg != null && msg.target == null) { 25 // Stalled by a barrier. Find the next asynchronous message in the queue. 26 do { 27 prevMsg = msg; 28 msg = msg.next; 29 } while (msg != null && !msg.isAsynchronous()); 30 } 31 if (msg != null) { 32 if (now < msg.when) { 33 // Next message is not ready. Set a timeout to wake up when it is ready. 34 nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); 35 } else { 36 // Got a message. 37 mBlocked = false; 38 if (prevMsg != null) { 39 prevMsg.next = msg.next; 40 } else { 41 mMessages = msg.next; 42 } 43 msg.next = null; 44 if (DEBUG) Log.v(TAG, "Returning message: " + msg); 45 msg.markInUse(); 46 return msg; 47 } 48 } else { 49 // No more messages. 50 nextPollTimeoutMillis = -1; 51 } 52 53 // Process the quit message now that all pending messages have been handled. 54 if (mQuitting) { 55 dispose(); 56 return null; 57 } 58 59 // If first time idle, then get the number of idlers to run. 60 // Idle handles only run if the queue is empty or if the first message 61 // in the queue (possibly a barrier) is due to be handled in the future. 62 if (pendingIdleHandlerCount < 0 63 && (mMessages == null || now < mMessages.when)) { 64 pendingIdleHandlerCount = mIdleHandlers.size(); 65 } 66 if (pendingIdleHandlerCount <= 0) { 67 // No idle handlers to run. Loop and wait some more. 68 mBlocked = true; 69 continue; 70 } 71 72 if (mPendingIdleHandlers == null) { 73 mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; 74 } 75 mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); 76 } 77 78 // Run the idle handlers. 79 // We only ever reach this code block during the first iteration. 80 for (int i = 0; i < pendingIdleHandlerCount; i++) { 81 final IdleHandler idler = mPendingIdleHandlers[i]; 82 mPendingIdleHandlers[i] = null; // release the reference to the handler 83 84 boolean keep = false; 85 try { 86 keep = idler.queueIdle(); 87 } catch (Throwable t) { 88 Log.wtf(TAG, "IdleHandler threw exception", t); 89 } 90 91 if (!keep) { 92 synchronized (this) { 93 mIdleHandlers.remove(idler); 94 } 95 } 96 } 97 98 // Reset the idle handler count to 0 so we do not run them again. 99 pendingIdleHandlerCount = 0; 100 101 // While calling an idle handler, a new message could have been delivered 102 // so go back and look again for a pending message without waiting. 103 nextPollTimeoutMillis = 0; 104 } 105 }
从24-30我们可以看到,他遍历了整个queue找到msg,若是msg为null,我们可以看到50,他把nextPollTimeoutMillis = -1;实际上是等待enqueueMessage的nativeWake来唤醒。较深的源码涉及了native层代码,有兴趣可以研究一下。简单来说next()方法,在有消息是会返回这条消息,若没有,则阻塞在这里。
我们回到loop()方法27msg.target.dispatchMessage(msg);我们看代码
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
msg.target实际上就是发送这条消息的Handler,我们可以看到它将msg交给dispatchMessage(),最后调用了我们熟悉的方法handleMessage(msg);
三、总结
到目前为止,我们了解了android的消息机制流程,但它实际上还涉及了深层的native层方法,这里有一篇博客专门讲解这个转载一下
http://www.cnblogs.com/angeldevil/p/3340644.html。