zoukankan      html  css  js  c++  java
  • poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 13611   Accepted: 6138

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: N, M, and X
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    题目及算法分析:
    代码:
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <math.h>
    #include <ctype.h>
    #include <iostream>
    #include <string>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #define N 1000+20
    #define INF 0x3f3f3f3f
    
    using namespace std;
    
    int map[N][N];
    int dis[N], ans[N];
    bool vis[N];
    int n, m, s;
    
    int Dijkstra(int s)
    {
    	int i, j, k;
    	for(i=1; i<=n; i++)
    		dis[i]=map[s][i];
    	vis[s]=true;
    	for(k=1; k<n; k++)
    	{
    		int mi=INF, pos;
    		for(i=1; i<=n; i++)
    		{
    			if(vis[i]==false && dis[i]<mi )
    			{
    				mi=dis[i]; pos=i;
    			}
    		}
    		vis[pos]=true;
    		for(j=1; j<=n; j++)
    		{
    			if(vis[j]==false && dis[j]>dis[pos]+map[pos][j] )
    				dis[j]=dis[pos]+map[pos][j];
    		}
    	}
    	for(i=1; i<=n; i++)
    	{
    		ans[i]=ans[i]+dis[i];
    	}
    	return 0;
    }
    
    void turn_over()
    {
    	for(int i=1; i<=n; i++)
    	{
    		for(int j=1; j<i; j++)
    			swap(map[i][j], map[j][i] );
    	}
    }
    
    int main()
    {
    	scanf("%d %d %d", &n, &m, &s);
    	int u, v, w;
    
    	for(int i=1; i<=n; i++)
    		for(int j=1; j<=n; j++)
    		{
    			if(i==j) map[i][j]=0;
    			else map[i][j]=INF;
    		}
    
    	for(int i=0; i<m; i++)
    	{
    		scanf("%d %d %d", &u, &v, &w);
    		map[u][v] = w;
    	}
    	memset(vis, false, sizeof(vis));
    	memset(ans, 0, sizeof(ans));
    	Dijkstra(s);
    	turn_over();
    	memset(vis, false, sizeof(vis));
        Dijkstra(s);
    	int cc=-1;
        for(int i=1; i<=n; i++)
        {
            if(ans[i]>cc && ans[i]<INF )
                cc=ans[i];
        }
        printf("%d
    ", cc );
    	return 0;
    }
    
  • 相关阅读:
    python 类
    hdu 5761 Rowe Bo 微分方程
    calendar 示例
    hdu 5753 Permutation Bo
    hdu 5752 Sqrt Bo
    finally 语句
    throws 和 throw
    python打开.pkl的文件并显示里面的内容
    Python 类变量,成员变量,静态变量,局部变量
    python 实例方法,类方法,静态方法,普通函数
  • 原文地址:https://www.cnblogs.com/yspworld/p/4372506.html
Copyright © 2011-2022 走看看