zoukankan      html  css  js  c++  java
  • Spark开发-Spark中类型安全UDAF开发示例

    Spark开发UDAF

     通过对源码中的示例代码进行实际演练,对各个功能进行了解,以及排除开发中的错误
      System.out.println(); 在UDAF中可以用来辅助一些判断
    

    开发示例代码

    `
    import org.apache.spark.sql.*;
    import org.apache.spark.sql.expressions.Aggregator;
    import java.io.Serializable;
    import java.util.Arrays;
    import java.util.List;
    public class MeanTypeUDAF  implements Serializable{
    /**
     * 输入数据类型 IN:输入数据类型
     */
    public static class MyEmployee implements Serializable {
        private String name;
        private long salary;
        /**
         * 类中添加了一个无参数的构造函数,问题解决
         * 数据类型 long 和 Long
         */
        public   MyEmployee(){}
    
        private   MyEmployee(String name, long salary){
            this.name = name;
            this.salary = salary;
        }
        public String getName() {
            return name;
        }
    
        public void setName(String name) {
            this.name = name;
        }
    
        public long getSalary() {
            return salary;
        }
    
        public void setSalary(long salary) {
            this.salary = salary;
        }
    
    }
    
    /**
     * 输出数据类型  OUT:输出数据类型
     */
    public static class AverageBuffer implements Serializable {
        private long sum;
        private long count;
        /**
         * 类中添加了一个无参数的构造函数,问题解决
         * 数据类型 long 和 Long
         */
        public  AverageBuffer(){ }
        private AverageBuffer(long sum, long count){
            this.sum = sum;
            this.count = count;
        }
    
        public long getSum() {
            return sum;
        }
        public long getCount() {
            return count;
        }
        public void setSum(long sum) {
            this.sum = sum;
        }
        public void setCount(long count) {
            this.count = count;
        }
    }
    
    /**
     * abstract class Aggregator[-IN, BUF, OUT] extends Serializable
     *     IN:输入数据类型
     *    BUF:缓冲区数据类型
     *    OUT:输出数据类型
     */
    public static class MyAverage extends Aggregator<MyEmployee, AverageBuffer , Double>  {
        /**
         * 中间结构的输入数据结构 Encoder.bean bufferEncoder: Encoder[BUF]
         */
        @Override
        public Encoder<AverageBuffer> bufferEncoder() {
            return Encoders.bean(AverageBuffer.class);
        }
    
        /**
         * 聚合函数的输出数据结构 Encoders.DOUBLE()
         */
        @Override
        public Encoder<Double> outputEncoder() {
            return Encoders.DOUBLE();
        }
    
        /**
         * aggregation 初始化  b + zero = b
         * 初始化缓冲区
         * zero: BUF
         */
        @Override
        public AverageBuffer zero() {
            return new AverageBuffer(0L, 0L);
        }
    
        /**
         *  给聚合函数传入一条新数据进行处理
         *  buffer里面存放着累计的执行结果,input是当前的执行结果
         *  reduce(b: BUF, a: IN): BUF
         */
        @Override
        public AverageBuffer reduce(AverageBuffer buffer, MyEmployee employee) {
            long newSum = buffer.getSum() + employee.getSalary();
            long newCount = buffer.getCount() + 1;
            buffer.setSum(newSum);
            buffer.setCount(newCount);
            return buffer;
        }
    
        /**
         *  合并聚合函数缓冲区-全局聚合 merge(b1: BUF, b2: BUF): BUF
         */
        @Override
        public AverageBuffer merge(AverageBuffer b1, AverageBuffer b2) {
            long mergedSum = b1.getSum() + b2.getSum();
            long mergedCount = b1.getCount() + b2.getCount();
            b1.setSum(mergedSum);
            b1.setCount(mergedCount);
            return b1;
        }
    
        /**
         * 计算最终结果 finish(reduction: BUF): OUT
         */
        @Override
        public Double finish(AverageBuffer reduction) {
            return ((double) reduction.getSum()) / reduction.getCount();
        }
    }
    public static void main(String[] args) {
        SparkSession spark = SparkSession
                .builder()
                .appName("Java Spark SQL data sources example")
                .config("spark.some.config.option", "some-value")
                .master("local[2]")
                .getOrCreate();
        // Create an instance of a Bean class
        List<MyEmployee> Da = Arrays.asList(
                new MyEmployee("CFF",30L),
                new MyEmployee("CFAF",50L),
                new MyEmployee("ADD",10L)
        );
        Encoder<MyEmployee> personEncoder = Encoders.bean(MyEmployee.class);
        Dataset<MyEmployee> itemsDataset = spark.createDataset( Da, personEncoder);
        itemsDataset.printSchema();
        itemsDataset.show();
        System.out.println(itemsDataset.head().getName());
        System.out.println(itemsDataset.head().getSalary());
        MyAverage myAverage = new MyAverage();
        System.out.println("############");
      // Convert the function to a `TypedColumn` and give it a name
        //使用TypedColumn,目的是为了能在Dataset中使用
        TypedColumn<MyEmployee, Double> averageSalary = myAverage.toColumn().name("average_salary");
        itemsDataset.printSchema();
        Dataset<Double> result = itemsDataset.select(averageSalary);
        result.show();
    }
    }`
    

    说明

    使用UDAF的类型安全的示例,同时也是对Dataset中Bean的数据来源做个简单的使用
    报错: Caused by: org.codehaus.commons.compiler.CompileException: File 'generated.java', Line 24, Column 87: 
     failed to compile: org.codehaus.commons.compiler.CompileException: File 'generated.java', Line 24, Column 87:
      No applicable constructor/method found for zero actual parameters;  candidates are: 
    

    参考

      http://spark.apache.org/docs/latest/sql-ref-functions-udf-aggregate.html
  • 相关阅读:
    YYHSOI模拟赛题解(T6围栏问题)
    取水
    Spring.Net实现跨数据库服务层事务管理
    使用node.js + jsonserver + mock.js 搭建本地开发mock数据服务
    [转]SQL SERVER整理索引碎片测试
    asp.net mvc 安全测试漏洞 " HTTP 动词篡改的认证旁路" 问题解决
    JavaScript中子类调用父类方法的实现
    asp.net mvc 安全测试漏洞 "跨站点请求伪造" 问题解决
    C#学习记录3下——类的封装,继承,多态
    C#学习记录8——XAML
  • 原文地址:https://www.cnblogs.com/ytwang/p/14007331.html
Copyright © 2011-2022 走看看