zoukankan      html  css  js  c++  java
  • python重试库retryiny源码剖析

    本篇博文试着剖析有名的python第三方库retrying源码。

       在剖析其源码之前,有必要讲一下retrying的用法,方便理解。

       安装:

      pip install retrying

      或者

      easy_install retrying

      一些用法实例如下:

    #example 1
    from retrying import retry
    
    @retry
    def never_give_up_never_surrender():
         print "一直重试且两次重试之间无需等待"
    #example 2
    from retrying import retry
    
    @retry(stop_max_attempt_number=7)
    def stop_after_7_attempts():
        print "重试七次后停止"
    #example 3
    from retrying import retry
    
    @retry(stop_max_delay=10000)
    def stop_after_10_s():
        print "十秒之后停止重试"
    #example 4
    from retrying import retry
    
    @retry(wait_fixed=2000)
    def wait_2_s():
        print "每次重试间隔两秒"
    #example 5
    from retrying import retry
    
    @retry(wait_random_min=1000, wait_random_max=2000)
    def wait_random_1_to_2_s():
        print "每次重试随机等待1到2秒"
    复制代码
    #example 6
    from retrying import retry
    
    @retry(wait_exponential_multiplier=1000, wait_exponential_max=10000)
    def wait_exponential_1000():
        print "指数退避,每次重试等待 2^x * 1000 毫秒,上限是10秒,达到上限后每次都等待10秒"
    复制代码
    复制代码
    #example 7
    def retry_if_io_error(exception):
        """Return True if we should retry (in this case when it's an IOError), False otherwise"""
        return isinstance(exception, IOError)
    
    @retry(retry_on_exception=retry_if_io_error)
    def might_io_error():
        print "IO异常则重试,并且将其它异常抛出"
    
    @retry(retry_on_exception=retry_if_io_error, wrap_exception=True)
    def only_raise_retry_error_when_not_io_error():
        print "IO异常则重试,并且将其它异常用RetryError对象包裹"
    复制代码
    复制代码
    #exampe 8,根据返回结果判断是否重试
    def retry_if_result_none(result):
        """Return True if we should retry (in this case when result is None), False otherwise"""
        return result is None
    
    @retry(retry_on_result=retry_if_result_none)
    def might_return_none():
        print "若返回结果为None则重试"
    复制代码

      上面八个例子是retrying的用法,只需在要重试的方法上加上@retry注解,并以相应的条件为参数即可,那么@retry背后到底是如何实现的呢?下面给出@retry注解实现的方法。

    复制代码
     1 #装饰器模式,对需要重试的函数,利用retry注解返回
     2 def retry(*dargs, **dkw):
     3     """
     4     Decorator function that instantiates the Retrying object
     5     @param *dargs: positional arguments passed to Retrying object
     6     @param **dkw: keyword arguments passed to the Retrying object
     7     """
     8     # support both @retry and @retry() as valid syntax
     9     #当用法为@retry不带括号时走这条路径,dargs[0]为retry注解的函数,返回函数对象wrapped_f
    10     if len(dargs) == 1 and callable(dargs[0]):
    11         def wrap_simple(f):
    12 
    13             @six.wraps(f)#注解用于将函数f的签名复制到新函数wrapped_f
    14             def wrapped_f(*args, **kw):
    15                 return Retrying().call(f, *args, **kw)
    16 
    17             return wrapped_f
    18 
    19         return wrap_simple(dargs[0])
    20 
    21     else:#当用法为@retry()带括号时走这条路径,返回函数对象wrapped_f
    22         def wrap(f):
    23 
    24             @six.wraps(f)#注解用于将函数f的签名复制到新函数wrapped_f
    25             def wrapped_f(*args, **kw):
    26                 return Retrying(*dargs, **dkw).call(f, *args, **kw)
    27 
    28             return wrapped_f
    29 
    30         return wrap
    复制代码

      当用@retry标记函数时,例如实例1,其实执行了

    never_give_up_never_surrender = retry(never_give_up_never_surrender)

      此时的never_give_up_never_surrender函数实际上是10-19行返回的wrapped_f函数,后续对never_give_up_never_surrender函数的调用都是调用的14行的wrapped_f函数。

    当使用@retry()或者带参数的@retry(params)时,如实例2,实际执行了:

    stop_after_7_attempts = retry(stop_max_attempt_number)(stop_after_7_attempts)

      此时的stop_after_7_attempts函数实际上是22-29行的wrapped_f函数,后续对stop_after_7_attempts函数的调用都是对25行的wrapped_f函数调用。

    可以看到实际上@retry将对需要重试的函数调用转化为对Retrying类中call函数的调用,重试逻辑也在这个函数实现,实现对逻辑代码的无侵入,代码如下:

    复制代码
     1 def call(self, fn, *args, **kwargs):
     2         start_time = int(round(time.time() * 1000))
     3         attempt_number = 1
     4         while True:
     5             #_before_attempts为@retry传进来的before_attempts,在每次调用函数前执行一些操作
     6             if self._before_attempts:
     7                 self._before_attempts(attempt_number)
     8 
     9             try:#Attempt将函数执行结果或者异常信息以及执行次数作为内部状态,用True或False标记是内部存的值正常执行结果还是异常
    10                 attempt = Attempt(fn(*args, **kwargs), attempt_number, False)
    11             except:
    12                 tb = sys.exc_info()#获取异常堆栈信息,sys.exc_info()返回type(异常类型), value(异常说明), traceback(traceback对象,包含更丰富的信息)
    13                 attempt = Attempt(tb, attempt_number, True)
    14 
    15             if not self.should_reject(attempt):#根据本次执行结果或异常类型判断是否应该停止
    16                 return attempt.get(self._wrap_exception)
    17             
    18             if self._after_attempts:#_after_attempts为@retry传进来的after_attempts,在每次调用函数后执行一些操作
    19                 self._after_attempts(attempt_number)
    20             
    21             delay_since_first_attempt_ms = int(round(time.time() * 1000)) - start_time
    22             if self.stop(attempt_number, delay_since_first_attempt_ms):#根据重试次数和延迟判断是否应该停止
    23                 if not self._wrap_exception and attempt.has_exception:
    24                     # get() on an attempt with an exception should cause it to be raised, but raise just in case
    25                     raise attempt.get()
    26                 else:
    27                     raise RetryError(attempt)
    28             else:#不停止则等待一定时间,延迟时间根据wait函数返回值和_wait_jitter_max计算
    29                 sleep = self.wait(attempt_number, delay_since_first_attempt_ms)
    30                 if self._wait_jitter_max:
    31                     jitter = random.random() * self._wait_jitter_max
    32                     sleep = sleep + max(0, jitter)
    33                 time.sleep(sleep / 1000.0)
    34 
    35             attempt_number += 1 #进行下一轮重试
    复制代码

      9-13行将函数执行返回结果或异常存入Attempt对象attempt中,Attempt类如下:

    复制代码
    class Attempt(object):
        """
        An Attempt encapsulates a call to a target function that may end as a
        normal return value from the function or an Exception depending on what
        occurred during the execution.
        """
        #value值为函数返回结果或异常,根据has_exception判断
        def __init__(self, value, attempt_number, has_exception):
            self.value = value
            self.attempt_number = attempt_number
            self.has_exception = has_exception
        #返回函数执行结果或异常,并根据wrap_exception参数对异常用RetryError包裹
        def get(self, wrap_exception=False):
            """
            Return the return value of this Attempt instance or raise an Exception.
            If wrap_exception is true, this Attempt is wrapped inside of a
            RetryError before being raised.
            """
            if self.has_exception:
                if wrap_exception:
                    raise RetryError(self)
                else:#重新构造原异常抛出
                    six.reraise(self.value[0], self.value[1], self.value[2])
            else:
                return self.value
    
        def __repr__(self):
            if self.has_exception:
                return "Attempts: {0}, Error:
    {1}".format(self.attempt_number, "".join(traceback.format_tb(self.value[2])))
            else:
                return "Attempts: {0}, Value: {1}".format(self.attempt_number, self.value)
    复制代码

      15行根据should_reject函数的返回值判断是否停止重试,代码如下:

    复制代码
     def should_reject(self, attempt):
            reject = False
            #假如异常在retry_on_exception参数中返回True,则重试,默认不传异常参数时,发生异常一直重试
            if attempt.has_exception:
                reject |= self._retry_on_exception(attempt.value[1])
            else:#假如函数返回结果在retry_on_result参数函数中为True,则重试
                reject |= self._retry_on_result(attempt.value) 
    
            return reject
    复制代码

      22行根据重试次数和延迟判断是否应该停止重试,self.stop的赋值代码在构造函数中,代码片段如下:

    复制代码
            stop_funcs = []
            if stop_max_attempt_number is not None:
                stop_funcs.append(self.stop_after_attempt)
    
            if stop_max_delay is not None:
                stop_funcs.append(self.stop_after_delay)
    
            if stop_func is not None:
                self.stop = stop_func
    
            elif stop is None:#执行次数和延迟任何一个达到限制则停止
                self.stop = lambda attempts, delay: any(f(attempts, delay) for f in stop_funcs)
    
            else:
                self.stop = getattr(self, stop)


    复制代码
    复制代码
    def stop_after_attempt(self, previous_attempt_number, delay_since_first_attempt_ms):
            """Stop after the previous attempt >= stop_max_attempt_number."""
            return previous_attempt_number >= self._stop_max_attempt_number
    
        def stop_after_delay(self, previous_attempt_number, delay_since_first_attempt_ms):
            """Stop after the time from the first attempt >= stop_max_delay."""
            return delay_since_first_attempt_ms >= self._stop_max_delay
    复制代码

      29-33行等待一段时间再次重试,其中延迟时间重点是根据29行的wait函数计算,wait函数在构造函数中赋值,代码片段如下:

    复制代码
    wait_funcs = [lambda *args, **kwargs: 0]
            if wait_fixed is not None:
                wait_funcs.append(self.fixed_sleep)
    
            if wait_random_min is not None or wait_random_max is not None:
                wait_funcs.append(self.random_sleep)
    
            if wait_incrementing_start is not None or wait_incrementing_increment is not None:
                wait_funcs.append(self.incrementing_sleep)
    
            if wait_exponential_multiplier is not None or wait_exponential_max is not None:
                wait_funcs.append(self.exponential_sleep)
    
            if wait_func is not None:
                self.wait = wait_func
    
            elif wait is None:#返回几个函数的最大值,作为等待时间
                self.wait = lambda attempts, delay: max(f(attempts, delay) for f in wait_funcs)
    
            else:
                self.wait = getattr(self, wait)
    复制代码

      其中最值得研究的是指数退避延迟时间计算方法,函数为exponential_sleep,代码如下:

    复制代码
    def exponential_sleep(self, previous_attempt_number, delay_since_first_attempt_ms):
            exp = 2 ** previous_attempt_number 
            result = self._wait_exponential_multiplier * exp #延迟时间为_wait_exponential_multiplier*2^x
            if result > self._wait_exponential_max:#假如大于退避上限_wait_exponential_max,则result为上限值
                result = self._wait_exponential_max
            if result < 0:
                result = 0
            return result
    复制代码
  • 相关阅读:
    解决linux sudo apt-get install xx是2出现无法定位软件包方法
    python的基础语法
    python 之装饰器
    Python-生成器
    Python中if __name__ = "__main__"的理解
    VS Code上配置python虚拟环境
    sympy简明用法
    Pandas中两个DataFrame的差集
    Time Series in pandas
    PyQt5高清屏幕自适应设置 QApplication.setAttribute(Qt.AA_EnableHighDpiScaling)
  • 原文地址:https://www.cnblogs.com/yunlongaimeng/p/10876472.html
Copyright © 2011-2022 走看看