Best Time to Buy and Sell Stock III
Question Solution
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
解答:
1. 从左往右扫描,计算0-i的这个区间的最大利润。方法可以参见股票第一题
2. 从右往左扫描,计算i-len这个区间的最大利润。方法同上。
3. 再从头至尾扫一次,每个节点加上左边和右边的利润。记录最大值。
复制一点别人的讲解:
O(n^2)的算法很容易想到:
找寻一个点j,将原来的price[0..n-1]分割为price[0..j]和price[j..n-1],分别求两段的最大profit。
进行优化:
对于点j+1,求price[0..j+1]的最大profit时,很多工作是重复的,在求price[0..j]的最大profit中已经做过了。
类似于Best Time to Buy and Sell Stock,可以在O(1)的时间从price[0..j]推出price[0..j+1]的最大profit。
但是如何从price[j..n-1]推出price[j+1..n-1]?反过来思考,我们可以用O(1)的时间由price[j+1..n-1]推出price[j..n-1]。
最终算法:
数组l[i]记录了price[0..i]的最大profit,
数组r[i]记录了price[i..n]的最大profit。
已知l[i],求l[i+1]是简单的,同样已知r[i],求r[i-1]也很容易。
最后,我们再用O(n)的时间找出最大的l[i]+r[i],即为题目所求。(最后一步可以合并在第二步中)。
REF: http://blog.csdn.net/pickless/article/details/12034365
代码1:
1 public int maxProfit(int[] prices) { 2 if (prices == null || prices.length == 0) { 3 return 0; 4 } 5 6 int len = prices.length; 7 int[] left = new int[len]; 8 int[] right = new int[len]; 9 10 int min = prices[0]; 11 left[0] = 0; 12 for (int i = 1; i < len; i++) { 13 min = Math.min(min, prices[i]); 14 left[i] = Math.max(left[i - 1], prices[i] - min); 15 } 16 17 int max = prices[len - 1]; 18 right[len - 1] = 0; 19 for (int i = len - 2; i >= 0; i--) { 20 max = Math.max(max, prices[i]); 21 right[i] = Math.max(right[i + 1], max - prices[i]); 22 } 23 24 int rst = 0; 25 for (int i = 0; i < len; i++) { 26 rst = Math.max(rst, left[i] + right[i]); 27 } 28 29 return rst; 30 }
代码2:
1 public class Solution { 2 public int maxProfit(int[] prices) { 3 if (prices == null) { 4 return 0; 5 } 6 7 int ret = 0; 8 9 int len = prices.length; 10 int[] leftProfile = new int[len]; 11 int profile = 0; 12 13 int min = Integer.MAX_VALUE; 14 for (int i = 0; i < len; i++) { 15 min = Math.min(min, prices[i]); 16 profile = Math.max(profile, prices[i] - min); 17 leftProfile[i] = profile; 18 } 19 20 int max = Integer.MIN_VALUE; 21 profile = 0; 22 for (int i = len - 1; i >= 0; i--) { 23 max = Math.max(max, prices[i]); 24 profile = Math.max(profile, max - prices[i]); 25 26 // sum the left profit and the right profit. 27 ret = Math.max(ret, profile + leftProfile[i]); 28 } 29 30 return ret; 31 } 32 }
DP思路:
1 // DP solution: 2 public int maxProfit(int[] prices) { 3 if (prices == null || prices.length == 0) { 4 return 0; 5 } 6 7 int ret = 0; 8 9 int len = prices.length; 10 int[] leftProfile = new int[len]; 11 12 int min = prices[0]; 13 leftProfile[0] = 0; 14 for (int i = 1; i < len; i++) { 15 min = Math.min(min, prices[i]); 16 leftProfile[i] = Math.max(leftProfile[i - 1], prices[i] - min); 17 } 18 19 int max = Integer.MIN_VALUE; 20 int profile = 0; 21 for (int i = len - 1; i >= 0; i--) { 22 max = Math.max(max, prices[i]); 23 profile = Math.max(profile, max - prices[i]); 24 25 // sum the left profit and the right profit. 26 ret = Math.max(ret, profile + leftProfile[i]); 27 } 28 29 return ret; 30 }