from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error from sklearn.externals import joblib from sklearn.metrics import r2_score from sklearn.neural_network import MLPRegressor import pandas as pd import numpy as np # 读取数据 lb = load_boston() # 标准化数据 x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.2) # 为数据增加一个维度,相当于把[1, 5, 10] 变成 [[1, 5, 10],] y_train = y_train.reshape(-1, 1) y_test = y_test.reshape(-1, 1) # 进行标准化 std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) std_y = StandardScaler() y_train = std_y.fit_transform(y_train) y_test = std_y.transform(y_test) # 正规方程预测 # 实例化线性回归估计器 lr = LinearRegression() lr.fit(x_train, y_train) print("r2 score of Linear regression is",r2_score(y_test,lr.predict(x_test))) # 岭回归 from sklearn.linear_model import RidgeCV # 使用RidgeCV来建立参数 cv = RidgeCV(alphas=np.logspace(-3, 2, 100)) cv.fit (x_train , y_train) print("r2 score of Linear regression is",r2_score(y_test,cv.predict(x_test))) # fit():就是求得训练集X的均值啊,方差啊,最大值啊,最小值啊这些训练集X固有的属性。可以理解为一个训练过程 # transform():在Fit的基础上,进行标准化,降维,归一化等操作(看具体用的是哪个工具,如PCA,StandardScaler等) # fit_transform():fit_transform是fit和transform的组合,既包括了训练又包含了转换 from keras.models import Sequential from keras.layers import Dense #基准NN #使用标准化后的数据 seq = Sequential() #构建神经网络模型 #input_dim来隐含的指定输入数据shape seq.add(Dense(64, activation='relu',input_dim=lb.data.shape[1])) seq.add(Dense(64, activation='relu')) seq.add(Dense(1, activation='relu')) seq.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) seq.fit(x_train, y_train, epochs=300, batch_size = 16, shuffle = False) score = seq.evaluate(x_test, y_test,batch_size=16) #loss value & metrics values print("score:",score) print('r2 score:',r2_score(y_test, seq.predict(x_test)))