zoukankan      html  css  js  c++  java
  • hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //灵活运用最大流量

    3081 意甲冠军:

       n女生选择不吵架,他甚至男孩边(他的朋友也算。并为您收集过程)。2二分图,一些副作用,有几个追求完美搭配(每场比赛没有重复的每一个点的比赛)

       后。每次增广一单位,(一次完美匹配),再改动起点还有终点的边流量,继续增广。直到达不到完美匹配为止。网上非常多是用二分做的,我认为不是必需。

    。。

    (网上传播跟风真严重。。

    非常多人都不是真正懂最大流算法的。。。

    3277 :

      再附加一条件,每一个女孩能够最多与k个自己不喜欢的男孩。

    求有几种完美匹配(同上)。

    我认为:求出上题答案,直接ans+k就可以(大于n取n)。由于。最多是n种匹配。在限制的基础上,求出最大值,然后余下的k种,是任意连边的,总有完美匹配方案吧?当然不大于n,我是这样想的。不知道为什么WA。。

    感觉没问题。。。网上大多是拆点,连自己不喜欢的边,跑最大流(盲目跟风解法,不经思考的人非常厌恶。。。吐槽几句:当我提出新解法的时候,有“牛”半秒内直接说显然错误。

    然后又半天不解释。说:“二分+并查集+拆点+最大流,自己理解”....╮(╯▽╰)╭...呵呵)


    3416: 求边不可反复最短路条数。

    比較简单。跑最短路后,类似dp找出是最短路的边。加入流量为1。直接最大流。


    代码3081:

    #include<iostream>
    #include<queue>
    #include<cstdio>
    #include<cstring>
    #include<set>
    #include<vector>
    using namespace std;
    const int inf=0x3f3f3f3f;
    const int maxv=210,maxe=40000;
    int nume=0;int head[maxv];int e[maxe][3];
    void inline adde(int i,int j,int c)
    {
        e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
        e[nume++][2]=c;
        e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
        e[nume++][2]=0;
    }
    int ss,tt,n,m,fr;
    int vis[maxv];int lev[maxv];
    bool bfs()
    {
        for(int i=0;i<maxv;i++)
          vis[i]=lev[i]=0;
        queue<int>q;
        q.push(ss);
        vis[ss]=1;
        while(!q.empty())
        {
            int cur=q.front();
            q.pop();
            for(int i=head[cur];i!=-1;i=e[i][1])
            {
                int v=e[i][0];
                if(!vis[v]&&e[i][2]>0)
                {
                    lev[v]=lev[cur]+1;
                    vis[v]=1;
                    q.push(v);
                }
            }
        }
        return vis[tt];
    }
    int dfs(int u,int minf)
    {
        if(u==tt||minf==0)return minf;
        int sumf=0,f;
        for(int i=head[u];i!=-1&&minf;i=e[i][1])
        {
            int v=e[i][0];
            if(lev[v]==lev[u]+1&&e[i][2]>0)
            {
                f=dfs(v,minf<e[i][2]?

    minf:e[i][2]); e[i][2]-=f;e[i^1][2]+=f; sumf+=f;minf-=f; } } if(!sumf) lev[u]=-1; return sumf; } int dinic() { int sum=0; while(bfs())sum+=dfs(ss,inf); return sum; }; int mapp[maxv][maxv]; int fa[maxv+1]; vector<set<int> >tos(maxv); int find(int x) { if(x==fa[x])return x; else fa[x]=find(fa[x]); return fa[x]; } void read_build() { int aa,bb; for(int j=0;j<m;j++) { scanf("%d%d",&aa,&bb); adde(aa,bb+n,1); mapp[aa][bb]=1; } for(int i=0;i<fr;i++) { scanf("%d%d",&aa,&bb); int xx=find(aa); int yy=find(bb); if(xx!=yy) { fa[xx]=yy; } } for(int i=1;i<=n;i++) { int tx=find(i); for(int es=head[i];es!=-1;es=e[es][1]) { if(es%2==0) tos[tx].insert(e[es][0]-n); } } for(int i=1;i<=n;i++) { int tx=find(i); set<int>::iterator it=tos[tx].begin(); for(;it!=tos[tx].end();it++) { if(mapp[i][*it]==0) { mapp[i][*it]=1; adde(i,(*it)+n,1); } } } for(int i=1;i<=n;i++) { adde(ss,i,1); adde(i+n,tt,1); } /* for(int i=0;i<=tt;i++) for(int j=head[i];j!=-1;j=e[j][1]) { printf("%d->%d:%d ",i,e[j][0],e[j][2]); }*/ } void init() { nume=0; memset(mapp,0,sizeof(mapp)); ss=0;tt=2*n+1; for(int i=0;i<maxv;i++) { head[i]=-1;fa[i]=i;tos[i].clear(); } } int main() { int T; scanf("%d",&T); for(int ii=1;ii<=T;ii++) { int tx; scanf("%d%d%d",&n,&m,&fr); init(); read_build(); int ans=0; while(dinic()==n) { ans++; for(int i=head[0];i!=-1;i=e[i][1]) { e[i][2]=1; e[i^1][2]=0; } for(int i=head[tt];i!=-1;i=e[i][1]) { e[i^1][2]=1; e[i][2]=0; } } printf("%d ",ans); } return 0; }





    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    归档模式与非归档模式之间的转换
    Cognos 常见错误解决办法
    Informatica 错误信息解决办法汇总
    转摘:解决动态列固定行月季年组合式报表
    数据库名、实例名、全局数据库名、服务名的区别
    转摘:维度与指标混合嵌入(合计)设计
    WinForm使用XML动态加载多语言
    windows中最重要的三个动态链接库及功能
    什么是.Net的异步机制(Invoke,BeginInvoke,EndInvoke) step 2
    深入理解.net服务器控件
  • 原文地址:https://www.cnblogs.com/yxwkf/p/4690422.html
Copyright © 2011-2022 走看看