zoukankan      html  css  js  c++  java
  • sdut2623--The number of steps(概率dp第一弹,求期望)

    The number of steps

    Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

    题目描写叙述

        Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two rooms,the third layer have three rooms …). Now she stands at the top point(the first layer), and the KEY of this maze is in the lowest layer’s leftmost room. Known that each room can only access to its left room and lower left and lower right rooms .If a room doesn’t have its left room, the probability of going to the lower left room and lower right room are a and b (a + b = 1 ). If a room only has it’s left room, the probability of going to the room is 1. If a room has its lower left, lower right rooms and its left room, the probability of going to each room are c, d, e (c + d + e = 1). Now , Mary wants to know how many steps she needs to reach the KEY. Dear friend, can you tell Mary the expected number of steps required to reach the KEY?


    输入

    There are no more than 70 test cases. 
     
    In each case , first Input a positive integer n(0
    The input is terminated with 0. This test case is not to be processed.

    输出

    Please calculate the expected number of steps required to reach the KEY room, there are 2 digits after the decimal point.

    演示样例输入

    3
    0.3 0.7
    0.1 0.3 0.6
    0 

    演示样例输出

    3.41

    提示

     

    来源

    2013年山东省第四届ACM大学生程序设计竞赛
    概率dp的第一道题目,题目比較简单。
    到着求解,最后一个点到最后的期望是0,其它的都由它连接的点的期望求出来。

    假设i到j的概率是pij,i到i的概率是pii,期望是E,那么求1到4的期望是
    1.   E4 = 0 。
    2.   E3 =E3 *P33 E4 * P34 + 1 ;
    3.   E2 = E2 *P22E4 * P24 + 1  ;
    4.   E1 =E1 *P11 + E2 *P12 +E3 * P13 + 1  ;
    记忆化搜索,最后推出要求的值
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    double dp[100][100] ;
    double a , b , c , d , e ;
    int i , j , n ;
    int ff(int x,int y)
    {
        if( x <= n && y >=(n+1)-x )
            return 1 ;
        return 0 ;
    }
    void f()
    {
    
        return ;
    }
    int main()
    {
        while(scanf("%d", &n) && n)
        {
            scanf("%lf %lf", &a, &b);
            scanf("%lf %lf %lf", &c, &d, &e);
            memset(dp,0,sizeof(dp));
            for(i = n ; i >= 1 ; i--)
            {
                for(j = (n+1)-i ; j <= n ; j++)
                {
                    if(i == n && j == (n+1)-i) continue ;
                    else if( i == n )
                        dp[i][j] = 1.0*( dp[i][j-1] ) + 1.0 ;
                    else
                    {
                        if( j == (n+1)-i )
                            dp[i][j] = a*dp[i+1][j-1] + b*dp[i+1][j] + 1.0 ;
                        else
                            dp[i][j] = c*dp[i+1][j-1] + d*dp[i+1][j] + e*dp[i][j-1] + 1.0 ;
                    }
                }
            }
            printf("%.2lf
    ", dp[1][n]);
        }
        return 0;
    }
    

  • 相关阅读:
    window端口被占用
    webstorm中关闭烦人Eslint语法检查
    STM32 printf 函数原型
    Memset、Memcpy、Strcpy 的作用和区别(转)
    SMD贴片元件的封装尺寸(转)
    Windows Phone开发工具初体验(转载)
    Open Cell(转载)
    标题:常用贴片元件封装(转载)
    关于TV Dongle的功能设计和思考【图】(转载)
    图片预览加上传遇到的一系列问题
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5252731.html
Copyright © 2011-2022 走看看