zoukankan      html  css  js  c++  java
  • 后缀数组suffix array

    倍增算法,时间复杂度O(nlogn)

    sa从小到大保存相对大小的下标

    理解LSD,x数组,sa数组

    char s[maxn];
    int sa[maxn],t[maxn],t2[maxn],c[maxn],n;
    
    void build_sa(int m)
    {
        //LSD基数排序
        int *x=t,*y=t2;//x数组保存rank
        //字串长度为1,即对每一个元素的大小排序
        for(int i=0;i<m;++i) c[i]=0;//计数数组清空
        for(int i=0;i<n;++i) c[x[i]=s[i]]++;//统计出现次数
        for(int i=1;i<m;++i) c[i]+=c[i-1];//计算前缀和
        for(int i=n-1;i>=0;--i) sa[--c[x[i]]]=i;//sa从小到大保存每一个元素的下标
        
        for(int k=1;k<=n;k<<=1){//k为要排序的子串长
            
            //排序第二keyword
            int p=0;               //y[]从小到大保存第二keyword的下标
            for(int i=n-k;i<n;++i) y[p++]=i;//从第n-k位開始的字串,第二keyword为0
            for(int i=0;i<n;++i) if(sa[i]>=k) y[p++]=sa[i]-k;
                                    //仅仅有下标大于k的第sa[i]个字符串的rank才干作为下一行的第sa[i]-k个字符串的第二keyword
            
            //排序第一keyword
                    //x[y[i]]是引用第一keyword,依据LSD第二次排序要在第一次的基础上
            for(int i=0;i<m;++i) c[i]=0;//计数数组清空
            for(int i=0;i<n;++i) c[x[y[i]]]++;//统计rank出现次数
            for(int i=1;i<m;++i) c[i]+=c[i-1];//求前缀和
            for(int i=n-1;i>=0;--i) sa[--c[x[y[i]]]]=y[i];//sa[]从小到大保存双keyword的下标
            
            p=1;swap(x,y);x[sa[0]]=0;//交换x,y数组 x[]数组从0到n-1保存rank值(0到p)
            for(int i=1;i<n;++i){
                x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k] ? p-1:p++;//注意p-1
                //因为p是计数rank值不同的字符串的数量,因此双keyword同样的串视为一样的rank
            }
            
            if(p>=n) break; //p个字符串的rank值都不同 ,p>=n时说明大小确立,以后即使倍增,sa也不会改变
            m=p;//用来下次基数排序的最大值
        }
    }

    ————————————————————————————————————--————————

    ————————————————————————————————————————————

    void build_sa()
    {
        int *x=t,*y=t2;
        for(int i=0;i<m;++i) c[i]=0;
        for(int i=0;i<n;++i) c[x[i]=y[i]]++;
        for(int i=1;i<m;++i) c[i]+=c[i-1];
        for(int i=n-1;i>=0;--i) sa[--c[x[i]]]=i;
        
        for(int k=1;k<=n;k<<=1){
            int p=0;
            for(int i=n-k;i<n;++i) y[p++]=i;
            for(int i=0;i<n;++i) if(sa[i]>=k) y[p++]=sa[i]-k;
            
            for(int i=0;i<m;++i) c[i]=0;
            for(int i=0;i<n;++i) c[x[y[i]]]++;
            for(int i=1;i<m;++i) c[i]+=c[i-1];
            for(int i=n-1;i>=0;--i) sa[--c[x[y[i]]]]=y[i];
            
            int p=0;swap(x,y);x[sa[0]]=0;
            for(int i=1;i<n;++i){
                x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k] p-1:p++;
            }
            if(p>=n) break;
            m=p;
                
        } 
    }
    int m;
    int cmp_suffix(char *pattern,int p)
    {
        return strncmp(pattern,s+sa[p],m);
    }
    
    int find(char *p)
    {
        m=strlen(p);
        if(cmp_suffix(p,0)<0) return -1;
        if(cmp_suffix(p,n-1)>0) return -1;
        int l=0,r=n-1;
        while(l<=r){
            int mid=l+(r-l)/2;
            int res=cmp_suffix(p,mid);
            if(!res) return mid;
            if(res>0) l=mid+1;
            if(res<0) r=mid-1;
        }
        return -1;
    }
    
    
    /*
    设suffix(k)是排在suffix(i-1)前一名的后缀。则它们的最长公共前缀是h[i-1]
    
    。那么suffix(k+1)将排在suffix(i)的前面(这里要求h[i-1]>1,假设h[i-1]≤
    
    1,原式显然成立)而且suffix(k+1)和suffix(i)的最长公共前缀是h[i-1]-1,
    
    所以suffix(i)和在它前一名的后缀的最长公共前缀至少是h[i-1]-1。依照h[1]
    
    ,h[2],……,h[n]的顺序计算。并利用h数组的性质,时间复杂度能够降为O
    
    (n)。

    */ void get_height() { for(int i=0;i<n;++i) rank[sa[i]]=i; int k=0; for(int i=0;i<n;++i){ if(k) k--; int j=sa[rank[i]]-1; while(s[j+k]==s[i+k]) k++; height[rank[i]]=k; } }



  • 相关阅读:
    bq25896 IINDPM 及 無 IINDPM 時的 regsiter
    不同狀況下的 bq25896 register
    bq25896 charging status CHRG_STAT register 0xB
    快充 IC BQ25896 如何判斷 手機插著 adapter 充電器時,adapter Iout 大於限制,adapter Vout 小於 限制,導致 battery 不但沒充電且還需放電。
    在 kernel 下打出 有帶參數的log。 怪異現象與解決方式。
    mtk flash tool,Win7 On VirtualBox
    java 去最后一位字符 str.substring(0,str.length()-1)
    Windows下Oracle的下载与安装及配置
    关于Java中SQL语句的拼接规则
    <id name="ID"> <generator class="assigned" /> </id>
  • 原文地址:https://www.cnblogs.com/yxysuanfa/p/6807236.html
Copyright © 2011-2022 走看看