zoukankan      html  css  js  c++  java
  • Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十四)Structured Streaming:Encoder

    一般情况下我们在使用Dataset<Row>进行groupByKey时,你会发现这个方法最后一个参数需要一个encoder,那么这些encoder如何定义呢?

    一般数据类型

    static Encoder<byte[]>    BINARY()                           An encoder for arrays of bytes.
    static Encoder<Boolean>    BOOLEAN()                         An encoder for nullable boolean type.
    static Encoder<Byte>    BYTE()                               An encoder for nullable byte type.
    static Encoder<java.sql.Date>    DATE()                      An encoder for nullable date type.
    static Encoder<java.math.BigDecimal>    DECIMAL()            An encoder for nullable decimal type.
    static Encoder<Double>    DOUBLE()                           An encoder for nullable double type.
    static Encoder<Float>    FLOAT()                             An encoder for nullable float type.
    static Encoder<Integer>    INT()                             An encoder for nullable int type.
    static Encoder<Long>    LONG()                               An encoder for nullable long type.
    static Encoder<Short>    SHORT()                             An encoder for nullable short type.
    static Encoder<String>    STRING()                           An encoder for nullable string type.
    static Encoder<java.sql.Timestamp>    TIMESTAMP()            An encoder for nullable timestamp type.

    示例:

    == Scala == Encoders are generally created automatically through implicits from a SparkSession, or can be explicitly created by calling static methods on Encoders.
       import spark.implicits._
       val ds = Seq(1, 2, 3).toDS() // implicitly provided (spark.implicits.newIntEncoder) 
    == Java == Encoders are specified by calling static methods on Encoders.
       List<String> data = Arrays.asList("abc", "abc", "xyz");
       Dataset<String> ds = context.createDataset(data, Encoders.STRING()); 

    Class类型:

    Or constructed from Java Beans:
       Encoders.bean(MyClass.class); 

    Tuple类型:

    一般类型的Tuple

       Encoder<Tuple2<Integer, String>> encoder2 = Encoders.tuple(Encoders.INT(), Encoders.STRING());
       List<Tuple2<Integer, String>> data2 = Arrays.asList(new scala.Tuple2(1, "a");
       Dataset<Tuple2<Integer, String>> ds2 = context.createDataset(data2, encoder2);

    Tuple包含类的:

    Encoder<Tuple2<String, MyClass>> encoder = Encoders.tuple(Encoders.STRING(), Encoders.bean(MyClass.class));

    关于Encoder请参考《http://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Encoder.html》

    关于Encoders请参考《http://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/Encoders.html》

  • 相关阅读:
    信息安全算法
    另类装载问题
    分治法快速排序
    动态规划最长公共子序列
    java网络编程1
    Jndi和会话bean
    EJB初探
    JSF初探
    简单计算器
    关于坐火车
  • 原文地址:https://www.cnblogs.com/yy3b2007com/p/9551644.html
Copyright © 2011-2022 走看看