Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
给你一些数字求出一个连续和最大的串 输出最大值
用两个指针指向我们的这个数组(l1 r1 表示 左指针和右指针 )
当这个数之前的和 < 0时 将我们的左指针指向这个数的下一个数
有指针一直跟着数组一直往下走
然后当我们的sum > max
那么改变我们的max 和 我们的左右指正( l , r )
代码见下:
#include <stdio.h>
int a[100005];
int main()
{
int n;
int k = 1;
scanf("%d",&n);
while(n--)
{
int m;
scanf("%d",&m);
int i = 0;
for(i = 1; i <= m; i++)
scanf("%d",&a[i]);
int max = -100000;
int l= 1,r= 1,l1 = 1,r1 = 1;
int sum = 0;
for(i = 1; i <= m; i++)
{
int flag = 0;
sum+=a[i];
r1 = i;
if(sum > max)
{
max = sum;
r =r1;
l = l1;
}
if(sum < 0)
{
l1 = i+1;
flag = 1;
}
/*printf("%d %d %d\n",l,r,sum);*/
if(flag) sum = 0;
}
printf("Case %d:\n",k++);
if(n>=1)
printf("%d %d %d\n\n",max,l,r);
else
printf("%d %d %d\n",max,l,r);
}
return 0;
}