zoukankan      html  css  js  c++  java
  • (转)spinlock与linux内核调度的关系

    一、自旋锁(spinlock)简介

      自旋锁在同一时刻只能被最多一个内核任务持有,所以一个时刻只有一个线程允许存在于临界区中。这点可以应用在多处理机器、或运行在单处理器上的抢占式内核中需要的锁定服务。

      二、信号量简介

      这里也介绍下信号量的概念,因为它的用法和自旋锁有相似的地方。

    Linux中的信号量是一种睡眠锁。如果有一个任务试图获得一个已被持有的信号量时,信号量会将其推入等待队列,然后让其睡眠。这时处理器获得自由去执行其它代码。当持有信号量的进程将信号量释放后,在等待队列中的一个任务将被唤醒,从而便可以获得这个信号量。

      三、自旋锁和信号量对比

      在很多地方自旋锁和信号量可以选择任何一个使用,但也有一些地方只能选择某一种。下面对比一些两者的用法。

      表1-1自旋锁和信号量对比

    应用场合

    信号量or自旋锁

    低开销加锁(临界区执行时间较快)

    优先选择自旋锁

    低开销加锁(临界区执行时间较长)

    优先选择信号量

    临界区可能包含引起睡眠的代码

    不能选自旋锁,可以选择信号量

    临界区位于非进程上下文时,此时不能睡眠

    优先选择自旋锁,即使选择信号量也只能用down_trylock非阻塞的方式

    四、自旋锁与linux内核进程调度关系

    我们讨论下表1-1中的第3种情况(其它几种情况比较好理解),如果临界区可能包含引起睡眠的代码则不能使用自旋锁,否则可能引起死锁。

    那么为什么信号量保护的代码可以睡眠而自旋锁就不能呢?

    先看下自旋锁的实现方法吧,自旋锁的基本形式如下:

    spin_lock(&mr_lock);

    //临界区

    spin_unlock(&mr_lock);

    跟踪一下spin_lock(&mr_lock)的实现

    #define spin_lock(lock)  _spin_lock(lock)

    #define _spin_lock(lock)      __LOCK(lock)

    #define __LOCK(lock) \

    do { preempt_disable(); __acquire(lock); (void)(lock); } while (0)

    注意到“preempt_disable()”,这个调用 的功能是“关抢占”(在spin_unlock中会重新开启抢占功能)。从中可以看出,使用自旋锁保护的区域是工作在非抢占的状态;即使获取不到锁,在 “自旋”状态也是禁止抢占的。了解到这,我想咱们应该能够理解为何自旋锁保护的代码不能睡眠了。试想一下,如果在自旋锁保护的代码中间睡眠,此时发生进程 调度,则可能另外一个进程会再次调用spinlock保护的这段代码。而我们现在知道了即使在获取不到锁的“自旋”状态,也是禁止抢占的,而“自旋”又是 动态的,不会再睡眠了,也就是说在这个处理器上不会再有进程调度发生了,那么死锁自然就发生了。

    咱们可以总结下自旋锁的特点:

    ●  单处理器非抢占内核下:自旋锁会在编译时被忽略;

    ●  单处理器抢占内核下:自旋锁仅仅当作一个设置内核抢占的开关;

    ●  多处理器下:此时才能完全发挥出自旋锁的作用,自旋锁在内核中主要用来防止多处理器中并发访问临界区,防止内核抢占造成的竞争。

    五、linux抢占发生的时间

    最后在了解下linux抢占发生的时间,抢占分为用户抢占和内核抢占。

    用户抢占在以下情况下产生:

    ●  从系统调用返回用户空间

    ●  从中断处理程序返回用户空间

    内核抢占会发生在:

    ●  当从中断处理程序返回内核空间的时候,且当时内核具有可抢占性;

    ●  当内核代码再一次具有可抢占性的时候。(如:spin_unlock时)

    ●  如果内核中的任务显式的调用schedule()

    ●  如果内核中的任务阻塞。

    基本的进程调度就是发生在时钟中断后,并且发现进程的时间 片已经使用完了,则发生进程抢占。通常我们会利用中断处理程序返回内核空间的时候可以进行内核抢占这个特性来提高一些I/O操作的实时性,如:当I/O事 件发生的是时候,对应的中断处理程序被激活,当它发现有进程在等待这个I/O事件的时候,它会激活等待进程,并且设置当前正在执行进程的 need_resched标志,这样在中断处理程序返回的时候,调度程序被激活,原来在等待I/O事件的进程(很可能)获得执行权,从而保证了对I/O事 件的相对快速响应(毫秒级)。可以看出,在I/O事件发生的时候,I/O事件的处理进程会抢占当前进程,系统的响应速度与调度时间片的长度无关。

    转自:http://my.oschina.net/u/174242/blog/71219

    自旋锁是一种非阻塞锁,也就是说,如果某线程需要获取自旋锁,但该锁已经被其他线程占用时,该线程不会被挂起,而是在不断的消耗CPU的时间,不停的试图获取自旋锁。

    互斥量是阻塞锁,当某线程无法获取互斥量时,该线程会被直接挂起,该线程不再消耗CPU时间,当其他线程释放互斥量后,操作系统会激活那个被挂起的线程,让其投入运行。

    两种锁适用于不同场景:

    如果是多核处理器,如果预计线程等待锁的时间很短,短到比线程两次上下文切换时间要少的情况下,使用自旋锁是划算的。

    如果是多核处理器,如果预计线程等待锁的时间较长,至少比两次线程上下文切换的时间要长,建议使用互斥量。

    如果是单核处理器,一般建议不要使用自旋锁。因为,在同一时间只有一个线程是处在运行状态,那如果运行线程发现无法获取锁,只能等待解锁,但因为自 身不挂起,所以那个获取到锁的线程没有办法进入运行状态,只能等到运行线程把操作系统分给它的时间片用完,才能有机会被调度。这种情况下使用自旋锁的代价 很高。

    如果加锁的代码经常被调用,但竞争情况很少发生时,应该优先考虑使用自旋锁,自旋锁的开销比较小,互斥量的开销较大。

    转自:http://blog.csdn.net/swordmanwk/article/details/6819457

     

    • 一、自旋锁spinlock的由来

        众所周知,自旋锁最初就是为了SMP系统设计的,实现在多处理器情况下保护临界区。所以SMP系统中,自旋锁的实现是完整的本来面目。但是对于UP系统,自旋锁可以说是SMP版本的阉割版。因为只有SMP系统中的自旋锁才需要真正“自旋”。

    • 二、自旋锁的目的

         自旋锁的实现是为了保护一段短小的临界区操作代码,保证这个临界区的操作是原子的,从而避免并发的竞争冒险。在Linux内核中,自旋锁通常用于包含内核数据结构的操作,你可以看到在许多内核数据结构中都嵌入有spinlock,这些大部分就是用于保证它自身被操作的原子性,在操作这样的结构体时都经历这样的过程:上锁-操作-解锁。

          如果内核控制路径发现自旋锁“开着”(可以获取),就获取锁并继续自己的执行。相反,如果内核控制路径发现锁由运行在另一个CPU上的内核控制路径“锁着”,就在原地“旋转”,反复执行一条紧凑的循环检测指令,直到锁被释放。 自旋锁是循环检测“忙等”,即等待时内核无事可做(除了浪费时间),进程在CPU上保持运行,所以它保护的临界区必须小,且操作过程必须短。不过,自旋锁通常非常方便,因为很多内核资源只锁1毫秒的时间片段,所以等待自旋锁的释放不会消耗太多CPU的时间。

    • 三、自旋锁需要做的工作

          从保证临界区访问原子性的目的来考虑,自旋锁应该阻止在代码运行过程中出现的任何并发干扰。这些“干扰”包括:

           1、中断,包括硬件中断和软件中断 (仅在中断代码可能访问临界区时需要)

             这种干扰存在于任何系统中,一个中断的到来导致了中断例程的执行,如果在中断例程中访问了临界区,原子性就被打破了。所以如果在某种中断例程中存在访问某个临界区的代码,那么就必须用spinlock保护。对于不同的中断类型(硬件中断和软件中断)对应于不同版本的自旋锁实现,其中包含了中断禁用和开启的代码。但是如果你保证没有中断代码会访问临界区,那么使用不带中断禁用的自旋锁API即可。 

          2、内核抢占(仅存在于可抢占内核中)

             2.6以后的内核中,支持内核抢占,并且是可配置的。这使UP系统和SMP类似,会出现内核态下的并发。这种情况下进入临界区就需要避免因抢占造成的并发,所以解决的方法就是在加锁时禁用抢占(preempt_disable(); ),在开锁时开启抢占(preempt_enable();注意此时会执行一次抢占调度) 。 

         3、 其他处理器对同一临界区的访问 (仅SMP系统) 

            SMP系统中,多个物理处理器同时工作,导致可能有多个进程物理上的并发。这样就需要在内存加一个标志,每个需要进入临界区的代码都必须检查这个标志,看是否有进程已经在这个临界区中。这种情况下检查标志的代码也必须保证原子和快速,这就要求必须精细地实现,正常情况下每个构架都有自己的汇编实现方案,保证检查的原子性。

          

    有些人会以为自旋锁的自旋检测可以用for实现,这种想法“Too young, too simple, sometimes naive”!你可以在理论上用C去解释,但是如果用for,起码会有如下两个问题:

    (1)你如何保证在SMP下其他处理器不会同时访问同一个的标志呢?(也就是标志的独占访问)

    (2)必须保证每个处理器都不会去读取高速缓存而是真正的内存中的标志(可以实现,编程上可以用volitale

           要根本解决这个问题,需要在芯片底层实现物理上的内存地址独占访问,并且在实现上使用特殊的汇编指令访问。请看参考资料中对于自旋锁的实现分析。以arm为例,从存在SMP的ARM构架指令集开始(V6、V7),采用LDREX和STREX指令实现真正的自旋等待。

    四、自旋锁操作组成

          根据上的介绍,我们很容易知道自旋锁的组成:

    • 中断控制(仅在中断代码可能访问临界区时需要
    • 抢占控制(仅存在于可抢占内核中需要)
    • 自旋锁标志控制  (仅SMP系统需要)

         中断控制是按代码访问临界区的不同而在编程时选用不同的变体,有些API中有,有些没有。

         而抢占控制和自旋锁标志控制依据内核配置(是否支持内核抢占)和硬件平台(是否为SMP)的不同而在编译时确定。如果不需要,相应的控制代码就编译为空函数。 对于非抢占式内核,由自旋锁所保护的每个临界区都有禁止内核抢占的API,但是为空操作。由于UP系统不存在物理上的并行,所以可以阉割掉自旋的部分,剩下抢占和中断操作部分即可。 

    转自:http://blog.chinaunix.net/uid-26990992-id-3264808.html

  • 相关阅读:
    【Python高级编程034 ● 静态web服务器 ● 静态Web服务器-返回固定页面数据】
    【Python高级编程033 ● 静态web服务器 ● 搭建Python自带静态Web服务器】
    【Python高级编程032 ● http协议 ● http响应报文】
    【Python高级编程031 ● http协议 ● http请求报文】
    做更好的自己:如何下得细功夫
    抓取图片视频等资源链接地址的Python小工具
    互联网应用服务端的常用技术思想与机制纲要
    《反脆弱》读书笔记
    错误启示录
    碎碎念集萃三九
  • 原文地址:https://www.cnblogs.com/yysblog/p/2777992.html
Copyright © 2011-2022 走看看