zoukankan      html  css  js  c++  java
  • HDU

    Rikka with Nash Equilibrium

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
    Total Submission(s): 1460    Accepted Submission(s): 591


    Problem Description
    Nash Equilibrium is an important concept in game theory.

    Rikka and Yuta are playing a simple matrix game. At the beginning of the game, Rikka shows an n×m integer matrix A. And then Yuta needs to choose an integer in [1,n], Rikka needs to choose an integer in [1,m]. Let i be Yuta's number and j be Rikka's number, the final score of the game is Ai,j

    In the remaining part of this statement, we use (i,j) to denote the strategy of Yuta and Rikka.

    For example, when n=m=3 and matrix A is 
    ⎡⎣⎢111241131⎤⎦⎥

    If the strategy is (1,2), the score will be 2; if the strategy is (2,2), the score will be 4.

    A pure strategy Nash equilibrium of this game is a strategy (x,y) which satisfies neither Rikka nor Yuta can make the score higher by changing his(her) strategy unilaterally. Formally, (x,y) is a Nash equilibrium if and only if:
    {Ax,yAi,y  i[1,n]Ax,yAx,j  j[1,m]


    In the previous example, there are two pure strategy Nash equilibriums: (3,1) and (2,2).

    To make the game more interesting, Rikka wants to construct a matrix A for this game which satisfies the following conditions:
    1. Each integer in [1,nm] occurs exactly once in A.
    2. The game has at most one pure strategy Nash equilibriums. 

    Now, Rikka wants you to count the number of matrixes with size n×m which satisfy the conditions.
     
    Input
    The first line contains a single integer t(1t20), the number of the testcases.

    The first line of each testcase contains three numbers n,m and K(1n,m80,1K109).

    The input guarantees that there are at most 3 testcases with max(n,m)>50.
     
    Output
    For each testcase, output a single line with a single number: the answer modulo K.
     
    Sample Input
    2
    3 3 100
    5 5 2333
     
    Sample Output
    64
    1170
     
    Source
     
     

    在一个矩阵中,如果仅有一个数同时是所在行所在列最大值,那么这个数满足纳什均衡。

    构造一个n*m的矩阵,里面填入[1,n*m]互不相同的数字,求有多少种构造方案。

    由题可得,满足纳什均衡的数一定是最大值n*m。因此我们可以从大往小依次将数填入矩阵,小数依附于大数的行或列,由此产生的三种行为:

    1.所在列有大数,行+1 数+1

    2.所在行有大数,列+1 数+1

    3.所在行列都有大数,位于交界处,数+1

    dp三种状态[占有行数][占有列数][占有个数]进行求解。因为本题数据很强,所以需要以下优化:

    1.尽可能得减少取模次数

    2.注意状态与遍历顺序保持一致

    //记忆化搜索
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    ll mod,n,m;
    ll dp[81][81][6401];
    ll dfs(ll x,ll y,ll z){
        if(dp[x][y][z]>-1) return dp[x][y][z];
        ll tmp=0;
        if(x<n) tmp+=y*(n-x)*dfs(x+1,y,z+1)%mod;
        if(y<m) tmp+=x*(m-y)*dfs(x,y+1,z+1)%mod;
        if(x*y>z) tmp+=(x*y-z)*dfs(x,y,z+1)%mod;
        return dp[x][y][z]=tmp;
    }
    int main()
    {
        ll t;
        scanf("%lld",&t);
        while(t--){
            memset(dp,-1,sizeof(dp));  //答案有0的情况,因此初始化为-1
            scanf("%lld%lld%lld",&n,&m,&mod);
            dp[n][m][n*m]=1;
            ll ans=n*m*dfs(1,1,1)%mod;
            printf("%lld
    ",ans);
        }
    }
    //dp
    #include<bits/stdc++.h>
    #define MAX 82
    #define INF 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    
    ll dp[MAX][MAX][6402];    //注意顺序
    
    int main()
    {
        int t,n,m,MOD,i,j,k;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d%d",&n,&m,&MOD);
            memset(dp,0,sizeof(dp));
            dp[1][1][1]=n*m;
            for(i=1;i<=n;i++){
                for(j=1;j<=m;j++){
                    for(k=1;k<n*m;k++){    //注意顺序
                        dp[i+1][j][k+1]+=(n-i)*j*dp[i][j][k];
                        if(dp[i+1][j][k+1]>=MOD) dp[i+1][j][k+1]%=MOD;
                        dp[i][j+1][k+1]+=(m-j)*i*dp[i][j][k];
                        if(dp[i][j+1][k+1]>=MOD) dp[i][j+1][k+1]%=MOD;
                        if(i*j>k){
                            dp[i][j][k+1]+=(i*j-k)*dp[i][j][k];
                            if(dp[i][j][k+1]>=MOD) dp[i][j][k+1]%=MOD;
                        }
                    }
                }
            }
            printf("%lld
    ",dp[n][m][n*m]%MOD);
        }
        return 0;
    }
  • 相关阅读:
    Django框架
    Django框架
    Django框架
    Django框架
    Bootstrap框架
    前端之jQuery
    前端之BOM和DOM
    Flask框架配置管理
    lement-ui、接口、restful规范、drf、跨域问题
    Vue项目入口与小知识总结
  • 原文地址:https://www.cnblogs.com/yzm10/p/9515292.html
Copyright © 2011-2022 走看看