题目链接:http://codeforces.com/problemset/problem/1152/E
题目大意
有一个 1~n-1 的排列p 和长度为 n 的数组 a,数组b,c定义如下:
b:bi = min(ai, ai + 1),1 <= i <= n-1。
c:ci = max(ai, ai + 1),1 <= i <= n-1。
数组b',c'定义如下:
b':b'i = bpi,1 <= i <= n-1。
c':c'i = cpi,1 <= i <= n-1。
给定数组 b',c',求 a。
分析
一笔画问题,求无向图欧拉通路。
这里用了Hierholzer算法(DFS)。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (n); ++i) 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 21 #define ms0(a) memset(a,0,sizeof(a)) 22 #define msI(a) memset(a,inf,sizeof(a)) 23 #define msM(a) memset(a,-1,sizeof(a)) 24 25 #define MP make_pair 26 #define PB push_back 27 #define ft first 28 #define sd second 29 30 template<typename T1, typename T2> 31 istream &operator>>(istream &in, pair<T1, T2> &p) { 32 in >> p.first >> p.second; 33 return in; 34 } 35 36 template<typename T> 37 istream &operator>>(istream &in, vector<T> &v) { 38 for (auto &x: v) 39 in >> x; 40 return in; 41 } 42 43 template<typename T1, typename T2> 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 45 out << "[" << p.first << ", " << p.second << "]" << " "; 46 return out; 47 } 48 49 inline int gc(){ 50 static const int BUF = 1e7; 51 static char buf[BUF], *bg = buf + BUF, *ed = bg; 52 53 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 54 return *bg++; 55 } 56 57 inline int ri(){ 58 int x = 0, f = 1, c = gc(); 59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 61 return x*f; 62 } 63 64 typedef long long LL; 65 typedef unsigned long long uLL; 66 typedef pair< double, double > PDD; 67 typedef pair< int, int > PII; 68 typedef pair< string, int > PSI; 69 typedef set< int > SI; 70 typedef vector< int > VI; 71 typedef map< int, int > MII; 72 typedef pair< LL, LL > PLL; 73 typedef vector< LL > VL; 74 typedef vector< VL > VVL; 75 const double EPS = 1e-10; 76 const LL inf = 0x7fffffff; 77 const LL infLL = 0x7fffffffffffffffLL; 78 const LL mod = 1e9 + 7; 79 const int maxN = 1e5 + 7; 80 const LL ONE = 1; 81 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 82 const LL oddBits = 0x5555555555555555; 83 84 struct Edge{ 85 int id; 86 int from, to; 87 88 Edge() {} 89 Edge(int id, int from, int to) : id(id), from(from), to(to) {} 90 }; 91 92 struct Vertex{ 93 int in = 0; 94 vector< Edge > edges; 95 }; 96 97 int n; 98 int b[maxN], c[maxN], a[maxN]; 99 unordered_map< int, Vertex > mIV; 100 int vis[maxN]; 101 int S; 102 int cnt; 103 104 // Hierholzer算法求欧拉路 105 inline void hierholzer(int s) { 106 vector< Edge > &tmp = mIV[s].edges; 107 while(!tmp.empty()) { 108 Edge t = tmp.back(); 109 tmp.pop_back(); 110 111 if(vis[t.id]) continue; 112 vis[t.id] = 1; 113 hierholzer(t.to); 114 a[cnt--] = t.to; 115 } 116 } 117 118 int main(){ 119 INIT(); 120 cin >> n; 121 For(i, 1, n - 1) cin >> b[i]; 122 For(i, 1, n - 1) { 123 cin >> c[i]; 124 if(c[i] < b[i]) { 125 cout << -1 << endl; 126 return 0; 127 } 128 } 129 For(i, 1, n - 1) { 130 mIV[b[i]].edges.PB(Edge(i, b[i], c[i])); 131 ++mIV[b[i]].in; 132 mIV[c[i]].edges.PB(Edge(i, c[i], b[i])); 133 ++mIV[c[i]].in; 134 } 135 136 // 找起点 137 // cnt记录奇度顶点个数 138 foreach(i, mIV) { 139 if(i->sd.in % 2 == 1) { 140 ++cnt; 141 S = i->ft; 142 } 143 } 144 if(S == 0) S = b[1]; // 没有奇度顶点就随便选一个顶点 145 if(cnt > 2 || cnt == 1) { // 有两个或0个奇度顶点,才可能有欧拉通路 146 cout << -1 << endl; 147 return 0; 148 } 149 150 cnt = n; 151 hierholzer(S); 152 a[cnt--] = S; 153 154 // 整个图可能不连通 155 if(cnt == 0)For(i, 1, n) cout << a[i] << " "; 156 else cout << -1; 157 cout << endl; 158 return 0; 159 }