zoukankan      html  css  js  c++  java
  • [数据删除] 的树 [树形dp]

    子树问题

    在这里插入图片描述


    color{red}{正解部分}

    F[i,j]F[i, j] 表示 ii 个节点, 深度不超过 jj 的构成树的方案数, 枚举根节点编号 次大 子树大小转移,

    F[i,j]=k=1iF[k,j1]×F[ik,j]×(i2k1)F[i, j] = sumlimits_{k=1}^{i} F[k, j-1] imes F[i-k, j] imes egin{pmatrix} i-2 \ k-1 end{pmatrix}

    color{red}{实现部分}

    #include<bits/stdc++.h>
    #define reg register
    
    int read(){
            char c;
            int s = 0, flag = 1;
            while((c=getchar()) && !isdigit(c))
                    if(c == '-'){ flag = -1, c = getchar(); break ; }
            while(isdigit(c)) s = s*10 + c-'0', c = getchar();
            return s * flag;
    }
    
    const int maxn = 505;
    const int mod = 998244353;
    
    int N;
    int K;
    int C[maxn][maxn];
    int F[maxn][maxn];
    
    bool vis[maxn];
    
    int main(){
            freopen("a.in", "r", stdin);
            N = read(), K = read();
            C[0][0] = 1;
            for(reg int i = 1; i <= N; i ++){
                    C[i][0] = 1;
                    for(reg int j = 1; j <= i; j ++) C[i][j] = (C[i-1][j-1] + C[i-1][j]) % mod;
            }
            for(reg int i = 1; i <= K; i ++) vis[read()] = 1;
            for(reg int i = 1; i <= N; i ++) F[1][i] = 1;
            if(!vis[N])
            for(reg int i = 2; i <= N; i ++)
                    for(reg int j = 1; j <= N; j ++)
                            for(reg int k = 1; k <= i; k ++){
                                    if(vis[k]) continue ;
                                    int add = 1ll*F[k][j-1]*F[i-k][j]%mod*C[i-2][k-1]%mod;
                                    F[i][j] = (F[i][j] + add) % mod;
                            }
            int L = read(), R = read();
            for(reg int i = L; i <= R; i ++) printf("%d
    ", (F[N][i] - F[N][i-1] + mod) % mod);
            return 0;
    }
    
  • 相关阅读:
    hdu 6010 Daylight Saving Time
    hdu 5999 The Third Cup is Free
    2011 USP Try-outs F. Auction of Services
    1449 砝码称重
    hdu 6205 card card card
    hdu 6201 transaction transaction transaction
    Codeforces 828D
    Codeforces Round #434 D
    zoj
    Codeforces Round #434 C
  • 原文地址:https://www.cnblogs.com/zbr162/p/11822396.html
Copyright © 2011-2022 走看看