zoukankan      html  css  js  c++  java
  • HDU6715 算术 [莫比乌斯函数]

    算术

    题目描述见链接 .


    color{red}{正解部分}

    现在要求解 i=1nj=1mμ(lcm(i,j))sumlimits_{i=1}^nsumlimits_{j=1}^mmu(lcm(i,j)),

    因为 μ(lcm(i,j))=μ(i)μ(j)μ(gcd(i,j))mu(lcm(i,j)) = mu(i)mu(j)mu(gcd(i,j)),

    :

    假设 μ(lcm(i,j))=0mu(lcm(i, j)) = 0, 说明 ijgcd(i,j)frac{ij}{gcd(i, j)} 分解质因数后含有幂数超过 11 的质因子, 设其为 pp,
    pip | ip∤ jp ot| j, 则 μ(i)=0mu(i)=0, 此时上式成立 .
    pip | ipjp | j, 设在 iipp 的幂数为 aa, jj 中的幂数为 bb, 则 a+bmin(a,b)>1a+b - min(a, b) > 1, 令 a>ba > b, 则 a>1a > 1, 此时 μ(i)=0mu(i) = 0, 此时上式成立 .

    假设 μ(lcm(i,j))0mu(lcm(i, j)) ot= 0, 则幂数相加的奇偶性与幂数相减的奇偶性相同, 不会改变 μmu 取值, 上式成立 .

    , herefore 综上所述, 上式成立

    所以原式 i=1nj=1mμ(i)μ(j)μ(gcd(i,j))sumlimits_{i=1}^nsumlimits_{j=1}^m mu(i)mu(j)mu(gcd(i,j)),
    枚举 d=gcd(i,j)d = gcd(i, j)

    d=1min(n,m)μ(d)i=1ndj=1mdμ(id)μ(jd)[gcd(i,j)==1]sumlimits_{d=1}^{min(n,m)}mu(d)sumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor}mu(id)mu(jd)[gcd(i,j)==1]

    根据 这里 所述的 μmu 性质 22,

    d=1min(n,m)μ(d)i=1ndj=1mdμ(id)μ(jd)kgcd(i,j)μ(k)sumlimits_{d=1}^{min(n,m)}mu(d)sumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor}mu(id)mu(jd)sumlimits_{k|gcd(i,j)} mu(k)
    d=1min(n,m)μ(d)k=1min(n,m)dμ(k)i=1nkdj=1mkdμ(idk)μ(jdk)sumlimits_{d=1}^{min(n, m)}mu(d) sumlimits_{k=1}^{lfloor frac{min(n, m)}{d} floor } mu(k) sumlimits_{i=1}^{lfloor frac{n}{kd} floor} sumlimits_{j=1}^{lfloor frac{m}{kd} floor} mu(idk)mu(jdk)

    T=dkT = dk,

    T=1min(n,m)dTμ(d)μ(Td)i=1nTμ(iT)j=1mTμ(jT)sumlimits_{T=1}^{min(n,m)}sumlimits_{dmid T}mu(d)mu(frac{T}{d})sumlimits_{i=1}^{lfloorfrac{n}{T} floor}mu(iT)sumlimits_{j=1}^{lfloorfrac{m}{T} floor}mu(jT)

    color{red}{实现部分}

    预处理括号内元素即可实现 O(NlogN)O(Nlog N) 计算答案 .

    T=1min(n,m)(dTμ(d)μ(Td))(i=1nTμ(iT))(j=1mTμ(jT))sumlimits_{T=1}^{min(n,m)} left(sumlimits_{dmid T}mu(d)mu(frac{T}{d}) ight) left(sumlimits_{i=1}^{lfloorfrac{n}{T} floor}mu(iT) ight) left(sumlimits_{j=1}^{lfloorfrac{m}{T} floor}mu(jT) ight)
    #include<bits/stdc++.h>
    #define reg register
    typedef long long ll;
    
    int read(){
            char c;
            int s = 0, flag = 1;
            while((c=getchar()) && !isdigit(c))
                    if(c == '-'){ flag = -1, c = getchar(); break ; }
            while(isdigit(c)) s = s*10 + c-'0', c = getchar();
            return s * flag;
    }
    
    const int maxn = 1e6 + 5;
    const int lim  = 1e6;
    
    int N;
    int M;
    int pc;
    int p[maxn];
    int mu[maxn];
    int s2[maxn];
    int s3[maxn];
    int vis[maxn];
    int s1[maxn+1];
    
    void Init(){
            mu[1] = 1; 
            for(reg int i = 2; i <= lim; i ++){
                    if(!vis[i]) p[++ pc] = i, mu[i] = -1;
                    for(reg int j = 1; j <= pc && p[j]*i <= lim; j ++){
                            vis[p[j]*i] = 1;
                            if(i % p[j] == 0){ mu[p[j]*i] = 0; break ; }
                            mu[p[j]*i] = -mu[i];
                    }
            }
            for(reg int i = 1; i <= lim; i ++)
                    for(reg int j = 1; j <= lim/i; j ++) s1[i*j] += mu[i] * mu[j];
    }
    
    void Work(){
            memset(s2, 0, sizeof s2); memset(s3, 0, sizeof s3);
            N = read(), M = read();
            for(reg int i = 1; i <= N; i ++)
                    for(reg int j = 1; j <= N/i; j ++) s2[i] += mu[i * j];
            for(reg int i = 1; i <= M; i ++)
                    for(reg int j = 1; j <= M/i; j ++) s3[i] += mu[i * j];
            N = std::min(N, M);
            ll Ans = 0;
            for(reg int i = 1; i <= N; i ++) Ans += 1ll*s1[i]*s2[i]*s3[i];
            printf("%lld
    ", Ans);
    }
    
    int main(){
            Init();
            int test_cnt = read();
            while(test_cnt --) Work();
            return 0;
    }
    
  • 相关阅读:
    图数据库查询语言
    深入探索Spring Data JPA, 从Repository 到 Specifications 和 Querydsl
    axios 浏览器内存泄露问题解决
    给Swagger换一套皮肤 Knife4j集成记录
    根据经纬度和半径计算经纬度范围
    最火 Web 前端组态软件 (可视化)
    Python-----删除给定目录下的所有文件
    Python----发送邮件yagmail
    python------将"["1","2"]"类型是字符串,转换为["1","2"]类型为列表,即eval()用法
    python----自动生成requirements.txt与导入requirements.txt中的库
  • 原文地址:https://www.cnblogs.com/zbr162/p/11822443.html
Copyright © 2011-2022 走看看