分析:高级数据结构学傻了.....一眼看上去觉得是莫队,发现带修改,于是分块,由于写的常数很大,只有70分.
正解很简单,记录下颜色为c的每只兔子的位置,每次二分找这个区间有多少只这种颜色的兔子就可以了,交换操作就交换位置,颜色.可能会存不下,所以用vector.
70分分块:
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int n, m, a[600][50010], b[300010], block, l[600], r[600], pos[300010], cnt, vis[300010]; bool flag = true; void update(int cur) { int t = b[cur], t2 = b[cur + 1]; swap(b[cur], b[cur + 1]); int p1 = pos[cur], p2 = pos[cur + 1]; a[p1][t]--; a[p2][t]++; a[p1][t2]++; a[p2][t2]--; } int query(int ll, int rr, int c) { int L = pos[ll], R = pos[rr], res = 0; if (L >= R - 1) { for (int i = ll; i <= rr; i++) if (b[i] == c) res++; return res; } for (int i = L + 1; i <= R - 1; i++) res += a[i][c]; for (int i = ll; i <= r[L]; i++) if (b[i] == c) res++; for (int i = l[R]; i <= rr; i++) if (b[i] == c) res++; return res; } int main() { scanf("%d%d", &n, &m); block = sqrt(n); for (int i = 1; i <= n; i++) pos[i] = (i - 1) / block + 1; cnt = (n - 1) / block + 1; for (int i = 1; i <= cnt; i++) l[i] = r[i - 1] + 1, r[i] = min(block * i, n); for (int i = 1; i <= n; i++) { int t; scanf("%d", &t); a[pos[i]][t]++; b[i] = t; } while (m--) { int op, l, r, c; scanf("%d", &op); if (op == 1) { scanf("%d%d%d", &l, &r, &c); printf("%d ", query(l, r, c)); } else { scanf("%d", &c); update(c); } } return 0; }
正解:
#include <cmath> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn = 300010; int n, m, a[maxn]; vector <int>b[maxn]; int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); b[a[i]].push_back(i); } for (int i = 1; i <= n; i++) sort(b[i].begin(), b[i].end()); while (m--) { int op, l, r, c; scanf("%d", &op); if (op == 1) { scanf("%d%d%d", &l, &r, &c); printf("%d ", (int)(upper_bound(b[c].begin(), b[c].end(), r) - lower_bound(b[c].begin(), b[c].end(), l))); } else { scanf("%d", &c); if (a[c] != a[c + 1]) { (*lower_bound(b[a[c]].begin(), b[a[c]].end(), c))++; (*lower_bound(b[a[c + 1]].begin(), b[a[c + 1]].end(), c + 1))--; swap(a[c], a[c + 1]); } } } return 0; }