zoukankan      html  css  js  c++  java
  • poj2891 Strange Way to Express Integers

    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 17425   Accepted: 5863

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    Source

    分析:模板.
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    ll a[1010], b[1010], n;
    
    ll gcd(ll a, ll b)
    {
        if (!b)
            return a;
        return gcd(b, a % b);
    }
    
    ll exgcd(ll a, ll b, ll &x, ll &y)
    {
        if (!b)
        {
            x = 1;
            y = 0;
            return a;
        }
        ll temp = exgcd(b, a % b, x, y), t = x;
        x = y;
        y = t - (a / b) * y;
        return temp;
    }
    
    ll niyuan(ll x, ll mod)
    {
        ll px, py, t;
        t = exgcd(x, mod, px, py);
        if (t != 1)
            return -1;
        return (px % mod + mod) % mod;
    }
    
    bool hebing(ll a1, ll n1, ll a2, ll n2, ll &a3, ll &n3)
    {
        ll d = gcd(n1, n2), c = a2 - a1;
        if (c % d != 0)
            return false;
        c = (c % n2 + n2) % n2;
        n1 /= d;
        n2 /= d;
        c /= d;
        c *= niyuan(n1, n2);
        c %= n2; //取模,在哪一个模数下就要模哪个,模数要跟着变化.
        c *= n1 * d;
        c += a1;
        n3 = n1 * n2 * d;
        a3 = (c % n3 + n3) % n3;
        return true;
    }
    
    ll China()
    {
        ll a1 = b[1], n1 = a[1], a2, n2;
        for (int i = 2; i <= n; i++)
        {
            ll a3, n3;
            a2 = b[i], n2 = a[i];
            if (!hebing(a1, n1, a2, n2, a3, n3))
                return -1;
            a1 = a3;
            n1 = n3;
        }
        return (a1 % n1 + n1) % n1;
    }
    
    int main()
    {
        scanf("%lld", &n);
        for (int i = 1; i <= n; i++)
            scanf("%lld%lld", &a[i], &b[i]);
        printf("%lld
    ", China());
    
        return 0;
    }
  • 相关阅读:
    Linux的chattr与lsattr命令详解
    ls命令
    linux PS1
    which,whereis,locate,find
    linux下的文件结构
    Linux各种命令
    PHP将两个二维数组合并为一个二维数组的方法
    vagrant virtualbox VM inaccessible解决办法
    常用Mysql查询语句
    删除数组元素并重建索引的方法
  • 原文地址:https://www.cnblogs.com/zbtrs/p/7890524.html
Copyright © 2011-2022 走看看