zoukankan      html  css  js  c++  java
  • poj2079 Triangle

    Triangle
    Time Limit: 3000MS   Memory Limit: 30000K
    Total Submissions: 9992   Accepted: 3001

    Description

    Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

    Input

    The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

    Output

    For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

    Sample Input

    3
    3 4
    2 6
    2 7
    5
    2 6
    3 9
    2 0
    8 0
    6 5
    -1

    Sample Output

    0.50
    27.00

    Source

    大致题意:给n个点,求面积最大的三角形.
    分析:面积最大的三角形的点肯定都在凸包上.最开始的想法是枚举其中两个点,让第三个点单调地去扫,会T掉,其实不光第三个点有单调性,第二个点也有单调性,可以先让第三个点走,当到达最大值时更新答案并让第二个点走,循环直到得到答案.
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const double eps = 1e-8;
    
    int n,tot;
    double ans;
    struct node
    {
        double x,y;
        node() {}
        node(double _x,double _y) :x(_x),y(_y) {}
    } e[50010],p[50010];
    
    double dist(node a,node b)
    {
        return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
    }
    
    double det(node a,node b)
    {
        return a.x * b.y - a.y * b.x;
    }
    
    double dot(node a,node b)
    {
        return a.x * b.x + a.y * b.y;
    }
    
    node operator + (node a,node b)
    {
        return node(a.x + b.x,a.y + b.y);
    }
    
    node operator - (node a,node b)
    {
        return node(a.x - b.x,a.y - b.y);
    }
    
    node operator * (node a,double x)
    {
        return node(a.x * x,a.y * x);
    }
    
    bool cmp(node a,node b)
    {
        double temp = det(a - e[1],b - e[1]);
        if (temp != 0)
            return temp > 0;
        return dist(a,e[1]) < dist(b,e[1]);
    }
    
    void solve()
    {
        int id = 1;
        for (int i = 1; i <= n; i++)
            if (e[i].x < e[id].x ||(e[i].x == e[id].x && e[i].y < e[id].y))
                id = i;
        if (id != 1)
            swap(e[1],e[id]);
        sort(e + 2,e + 1 + n,cmp);
        p[++tot] = e[1];
        for (int i = 2; i <= n; i++)
        {
            while (tot >= 2 && det(e[i] - p[tot - 1],p[tot] - p[tot - 1]) >= 0)
                tot--;
            p[++tot] = e[i];
        }
    }
    
    void solve2()
    {
        p[tot + 1] = p[1];
        int j,k;
        for (int i = 1; i <= tot; i++)
        {
            j = i % tot + 1;
            k = j % tot + 1;
            while (i != j && j != k && i != k)
            {
                while (det(p[k + 1] - p[j],p[i] - p[j]) >= det(p[k] - p[j],p[i] - p[j]))
                    k = k % tot + 1;
                ans = max(ans,fabs(det(p[k] - p[j], p[i] - p[j])) / 2);
                j = j % tot + 1;
            }
        }
    }
    
    int main()
    {
        while (scanf("%d",&n) != EOF && n != -1)
        {
            for (int i = 1; i <= n; i++)
                scanf("%lf%lf",&e[i].x,&e[i].y);
            tot = 0;
            ans = 0.0;
            solve();
            solve2();
            printf("%.2lf
    ",ans);
        }
    
        return 0;
    }
  • 相关阅读:
    java笔记使用线程池优化多线程编程
    java笔记查看和修改线程名称
    java笔记查看和修改线程的优先级
    java笔记策略模式和简单工厂模式
    java笔记用ThreadLocal管理线程,Callable<V>接口实现有返回值的线程
    java笔记枚举总结与详解
    java笔记关于克隆技术
    java笔记反射机制之基础总结与详解
    java笔记使用事件分配线程更新Swing控件
    java笔记关于int和byte[]的转换
  • 原文地址:https://www.cnblogs.com/zbtrs/p/8126207.html
Copyright © 2011-2022 走看看