zoukankan      html  css  js  c++  java
  • 模运算的基本性质

    基本理论 

    基本概念

    给定一个正整数p,任意一个整数n,一定存在等式 n = kp + r ;   

    其中k、r是整数,且 0 ≤ r < p,称呼k为n除以p的商,r为n除以p的余数。   

    对于正整数p和整数a,b,定义如下运算:   

    取模运算:a % p(或a mod p),表示a除以p的余数。   

    模p加法:(a + b) % p ,其结果是a+b算术和除以p的余数,也就是说,(a+b) = kp +r,则(a + b) % p = r。   

    模p减法:(a - b) % p ,其结果是a-b算术差除以p的余数。   

    模p乘法:(a * b) % p,其结果是 a * b算术乘法除以p的余数。

    正整数a,b对p取模,它们的余数相同,记做 a ≡ b % p或者a ≡ b (mod p)。   

    n % p得到结果的正负由被除数n决定,与p无关。

    例如:7%4 = 3, -7%4 = -3, 7%-4 = 3, -7%-4 = -3。  

    基本性质 

    (1)若p|(a-b)(注:a - b可被p整除),则a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)   

    (2)(a % p)=(b % p)意味a ≡ b (% p)  

    (3)对称性:a ≡ b (% p)等价于b ≡ a (% p)   

    (4)传递性:若a ≡ b (% p)且b ≡ c (% p) ,则a ≡ c (% p)   

    运算规则

    模运算与基本四则运算有些相似,但是除法例外。其规则如下:   

    (a + b) % p = (a % p + b % p) % p  

    (a - b) % p = (a % p - b % p) % p

    (a * b) % p = (a % p * b % p) % p   

    a^b % p = ((a % p)^b) % p 

    结合率:

    ((a+b) % p + c) % p = (a + (b+c) % p) % p

    ((a*b) % p * c)% p = (a * (b*c) % p) % p

     

    交换率: (a + b) % p = (b+a) % p

    (a * b) % p = (b * a) % p

    分配率: ((a +b)% p * c) % p = ((a * c) % p + (b * c) % p) % p

      

    重要定理

    若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p) 

    若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p)

    若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p)

    若a≡b (% p),则对于任意的c,都有a^c≡ b^c (%p)

  • 相关阅读:
    NSInternalInconsistencyException 关于iOS的背后线程刷新页面问题
    关于IOS UIlable 一行未满就换行
    ios 提交审核时出现二进制文件无效问题
    测试中缺陷等级分类
    测试的分类
    测试是一个纸杯
    如何测试一部电梯
    一个简单的测试案例
    【JVM】【常用工具】【MAT】macbook安装MAT(独立版,非eclipse插件)
    【Canal】【MySQL】解密阿里Canal :(一)Canal工作原理
  • 原文地址:https://www.cnblogs.com/zcy-backend/p/6824695.html
Copyright © 2011-2022 走看看