zoukankan      html  css  js  c++  java
  • Codeforces Round #498 (Div. 3) B. Polycarp's Practice

    B. Polycarp's Practice

    time limit per test

    2 seconds

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    Polycarp is practicing his problem solving skill. He has a list of nn problems with difficulties a1,a2,…,ana1,a2,…,an, respectively. His plan is to practice for exactly kk days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all nn problems in exactly kk days.

    Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in kk days he will solve all the nn problems.

    The profit of the jj-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the jj-th day (i.e. if he solves problems with indices from ll to rr during a day, then the profit of the day is maxl≤i≤raimaxl≤i≤rai). The total profit of his practice is the sum of the profits over all kk days of his practice.

    You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all nnproblems between kk days satisfying the conditions above in such a way, that the total profit is maximum.

    For example, if n=8,k=3n=8,k=3 and a=[5,4,2,6,5,1,9,2]a=[5,4,2,6,5,1,9,2], one of the possible distributions with maximum total profit is: [5,4,2],[6,5],[1,9,2][5,4,2],[6,5],[1,9,2]. Here the total profit equals 5+6+9=205+6+9=20.

    Input

    The first line of the input contains two integers nn and kk (1≤k≤n≤20001≤k≤n≤2000) — the number of problems and the number of days, respectively.

    The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤20001≤ai≤2000) — difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).

    Output

    In the first line of the output print the maximum possible total profit.

    In the second line print exactly kk positive integers t1,t2,…,tkt1,t2,…,tk (t1+t2+⋯+tkt1+t2+⋯+tk must equal nn), where tjtj means the number of problems Polycarp will solve during the jj-th day in order to achieve the maximum possible total profit of his practice.

    If there are many possible answers, you may print any of them.

    emm阅读理解

    题目要求

    将数组分为N段

    每段的价值是该段中最大元素的值

    1 2 6 5 段的价值是6

    求这N段最大价值和

    结构体存每个元素的值和位置

    找到前N大的元素 加和

    按前N大元素的位置进行分段

    注意边界

    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    const int MAXN = 2e4 + 10;
    
    struct num
    {
    	int val;
    	int pos;
    }arr[MAXN];
    
    bool cmp(num a, num b)
    {
    	return a.val > b.val;
    }
    
    bool cmp1(num a, num b)
    {
    	return a.pos < b.pos;
    }
    
    int main()
    {
    	int M, N;
    	
    	cin>>M>>N;
    	
    	for(int i = 1; i <= M; i++)
    	{
    		cin>>arr[i].val;
    		arr[i].pos = i;
    	}
    	
    	sort(arr + 1, arr + M + 1, cmp);
    	
    	int ans = 0;
    	
    	for(int i = 1; i <= N; i++)
    		ans += arr[i].val;
    		
    	cout<<ans<<endl;
    	
    	sort(arr + 1, arr + N + 1, cmp1);
    	
    	if( N == 1)
    		cout<<M<<endl;
    	else
    		for(int i = 1; i <= N; i++)
    		{
    			if(i == 1)
    				cout<<arr[1].pos<<' ';
    			else if(i == N)
    				cout<<M - arr[N - 1].pos<<endl;
    			else
    				cout<<arr[i].pos - arr[i - 1].pos<<' ';
    		}
    		
    	return 0;
    }
  • 相关阅读:
    VIO(4)—— 基于滑动窗口算法的 VIO 系统:可观性和 一致性
    矩阵零空间的含义和物理意义
    Spring Boot 2.5.1 发布!我真跟不上了。。。
    Redis 是并发安全的吗?你确定?
    Spring Boot 集成 Apollo 配置中心,真香、真强大!
    Spring Boot 接入支付宝,实战来了!
    微服务必须具备的 3 个基本功能!
    如何加速 Nginx 的服务响应?
    golang在日志中打印堆栈信息
    Maven
  • 原文地址:https://www.cnblogs.com/zeolim/p/12270576.html
Copyright © 2011-2022 走看看