zoukankan      html  css  js  c++  java
  • 平面最接近点对问题(分治法)

    问题描述参见:https://www.cnblogs.com/zyxStar/p/4591897.html

    代码参考:http://blog.csdn.net/qq_28666193/article/details/53351482(原代码中有几处错误,我作了修改)

    头文件部分

    (1)数据结构部分:

    //涉及的数据结构
    #ifndef DATASET_H
    #define DATASET_H
    
    struct point{  //点结构
        double x, y;
    };
    
    #endif

    (2)函数声明部分:

    //函数头文件
    //=======================================
    #ifndef FUNC_H
    #define FUNC_H
    
    #include "dataset.h"
    
    double closest_distance(point s[], int low, int high, point rec[]);
    double Distance(point a, point b);
    bool comp_x(point a, point b);
    bool comp_y(point a, point b);
    
    #endif

    源文件部分

    (1)函数实现部分:

    //求解最近距离的函数实现
    #include "dataset.h"
    #include <math.h>
    #include <algorithm>
    
    using namespace std;
    
    double Distance(point a, point b)  //计算两点距离
    {
        return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) - (a.y - b.y));
    }
    
    bool comp_x(point a, point b)  //按x升序判别函数
    {
        return a.x < b.x;
    }
    
    bool comp_y(point a, point b)  //按y升序判别函数
    {
        return a.y < b.y;
    }
    //函数实现:rec[]存储最接近点对;
    double closest_distance(point s[], int low, int high, point rec[])
    {
        double d1, d2, d3, d;
        int mid, i, j, index;
        double x1, y1, x2, y2; //记录最近的点对
        point *P = new point[high - low + 1];
        point temp_1[2], temp_2[2], temp_3[2];
    
        if (high - low == 1)  //两个点时的情况
        {
            rec[0].x = s[low].x; rec[0].y = s[low].y;
            rec[1].x = s[high].x; rec[1].y = s[high].y;
            return Distance(s[low], s[high]);
        }
    
        if (high - low == 2)  //三个点时的情况
        {
            d1 = Distance(s[low], s[low + 1]);
            d2 = Distance(s[low + 1], s[high]);
            d3 = Distance(s[low], s[high]);
            if ((d1 <= d2) && (d1 <= d3))  //这里在判断三种情况时,第二种情况没必要使用(d2<d3)&&(d2<d1),相较更繁琐了;
            {
                rec[0].x = s[low].x; rec[0].y = s[low].y;
                rec[1].x = s[low + 1].x; rec[1].y = s[low + 1].y;
                return d1;
            }
            else if (d2 < d3)
            {
                rec[0].x = s[low + 1].x; rec[0].y = s[low + 1].y;
                rec[1].x = s[high].x; rec[1].y = s[high].y;
                return d2;
            }
            else
            {
                rec[0].x = s[low].x; rec[0].y = s[low].y;
                rec[1].x = s[high].x; rec[1].y = s[high].y;
                return d3;
            }
        }
    
        mid = (low + high) / 2;
        d1 = closest_distance(s, low, mid, rec);
        temp_1[0] = rec[0];
        temp_1[1] = rec[1];
        d2 = closest_distance(s, mid + 1 ,high, rec);
        temp_2[0] = rec[0];
        temp_2[1] = rec[1];
        if (d1 <= d2)
        {
            d = d1;
            rec[0] = temp_1[0];
            rec[1] = temp_1[1];
        }
        else
        {
            d = d2;
            rec[0] = temp_2[0];
            rec[1] = temp_2[1];
        }
        index = 0;
        for (i = mid; (i >= low) && ((s[mid].x - s[i].x) < d); i--)
        {
            P[index++] = s[i];  //点集合P1
        }
        for (i = mid + 1; (i <= high) && ((s[i].x - s[mid].x) < d); i++)
        {
            P[index++] = s[i];  //点集合P2
        }
        sort(P, P + index, comp_y);  //升序排列
        for (i = 0; i < index; i++)
        {
            for (j = i + 1; j < index; j++)
            {
                if ((P[j].y - P[i].y) >= d)
                    break;
                else
                {
                    d3 = Distance(P[i], P[j]);
                    if (d3 < d)
                    {
                        rec[0].x = P[i].x; rec[0].y = P[i].y;
                        rec[1].x = P[j].x; rec[1].y = P[j].y;
                        d = d3;
                    }
                }
            }
        }
        delete []P;  //注意动态内存的删除方式,防止内存泄漏
        return d;
    }

    (2)主函数部分:

    //2018_02_24
    //使用分治法求解二维平面最接近点问题
    //=============================================================
    #include <iostream>
    #include <math.h>
    #include <algorithm>
    #include "dataset.h"  //数据结构实现放在这个头文件中
    #include "func.h"  //函数声明的头文件
    
    using namespace std;
    
    int main(void)
    {
        point p[10];  //设定点的集合
        int n;
        double minDist;
        cout << "输入点的个数:
    ";
        cin >> n;
        cout << "输入点集:(x , y) 
    ";
        for (int i = 0; i < n; i++)
            cin >> p[i].x >> p[i].y;
        sort(p, p + n, comp_x);  //对输入的点先进行排序
        point index[2];
        minDist = closest_distance(p, 0, n - 1, index);
        cout << "最小距离点对为:(" << index[0].x << "," << index[0].y << "),(" << index[1].x << "," << index[1].y << ")";
        cout << "最小距离为:
    " << minDist;
        system("pause");
        return 0;
    }

    最后,结果如下:

  • 相关阅读:
    StrBlobPtr类——weak_ptr访问vector元素
    StrBlob类——智能指针作为成员
    关于智能指针类型shared_ptr的计数问题
    桌面计算器——可调用对象练习
    union
    虚析构函数
    条款04 确定对象被使用前已先被初始化
    条款03 尽可能使用const
    Bugku-CTF之web8(txt????)
    Bugku-CTF之各种绕过
  • 原文地址:https://www.cnblogs.com/zf-blog/p/8468912.html
Copyright © 2011-2022 走看看