zoukankan      html  css  js  c++  java
  • Corn Fields POJ

    Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

    Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

    Input

    Line 1: Two space-separated integers: M and N
    Lines 2.. M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

    Output

    Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

    Sample Input

    2 3
    1 1 1
    0 1 0

    Sample Output

    9

    Hint

    Number the squares as follows:
    1 2 3
      4  

    There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.
    题解:dp[ i ][ state ]表示第i行当前状况下的方案数(状压dp的套路,只是需要一些二进制的技巧)
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 
     7 const int maxn=13;
     8 const int mod=1e8;
     9 
    10 int n,m;
    11 int dp[maxn][1<<maxn],line[1<<maxn];
    12 
    13 int main()
    14 {   cin>>n>>m;
    15     for(int i=1;i<=n;i++){
    16         for(int j=1;j<=m;j++){
    17             int temp;
    18             cin>>temp;
    19             line[i]|=temp<<(j-1);
    20         } 
    21     }
    22     
    23     dp[0][0]=1;
    24     for(int i=1;i<=n;i++){
    25         for(int j=0;j<(1<<m);j++){
    26             if((j&line[i])==j&&(j&(j>>1))==0){
    27                 for(int k=0;k<(1<<m);k++) if((j&k)==0) dp[i][j]=(dp[i][j]+dp[i-1][k])%mod; 
    28             }
    29         }
    30     }
    31     
    32     int ans=0;
    33     for(int i=0;i<(1<<m);i++) ans=(ans+dp[n][i])%mod;
    34     cout<<ans<<endl;
    35 }
  • 相关阅读:
    Linux crontab定时执行任务 命令格式与详细例子
    git的color configura
    Linux不用使用软件把纯文本文档转换成PDF文件的方法
    linux sar命令详细说明相关参数
    linux下sar tool command note
    Linux see 网卡当前流量
    安装调试Installing Odoo
    寻找[nginx] 由Lua 粘合的Nginx生态环境-- agentzh
    git检查与放弃本地的代码修改情况
    发现linux shell中$0,$?,$!等的特殊用法
  • 原文地址:https://www.cnblogs.com/zgglj-com/p/7806619.html
Copyright © 2011-2022 走看看