zoukankan      html  css  js  c++  java
  • 【转】透视矩阵详解

    原文地址http://www.cnblogs.com/graphics/archive/2012/07/25/2582119.html

    概述

    投影变换完成的是如何将三维模型显示到二维视口上,这是一个三维到二维的过程。你可以将投影变换看作是调整照相机的焦距,它模拟了为照相机选择镜头的过程。投影变换是所有变换中最复杂的一个。

    视锥体

    视锥体是一个三维体,他的位置和摄像机相关,视锥体的形状决定了模型如何从camera space投影到屏幕上。最常见的投影类型-透视投影,使得离摄像机近的物体投影后较大,而离摄像机较远的物体投影后较小。透视投影使用棱锥作为视锥体,摄像机位于棱锥的椎顶。该棱锥被前后两个平面截断,形成一个棱台,叫做View Frustum,只有位于Frustum内部的模型才是可见的。

    透视投影的目的

    透视投影的目的就是将上面的棱台转换为一个立方体(cuboid),转换后,棱台的前剪裁平面的右上角点变为立方体的前平面的中心(下图中弧线所示)。由图可知,这个变换的过程是将棱台较小的部分放大,较大的部分缩小,以形成最终的立方体。这就是投影变换会产生近大远小的效果的原因。变换后的x坐标范围是[-1, 1],y坐标范围是[-1, 1],z坐标范围是[0, 1](OpenGL略有不同,z值范围是[-1, 1])。

    透视投影矩阵推导

    下面来推导一下透视投影矩阵,这样我们就可以自己设置投影矩阵了,就可以模拟神奇的D3DXMatrixPerspectiveLH函数的功能了。那么透视投影到底做了什么工作呢?这一部分算是个难点,无论是DX SDK的帮助文档,还是大多数图形学书籍,对此都是一带而过,很少有详细讨论的,早期的DX SDK文档还讨论的稍微多一些,而新近的文档则完全取消了投影矩阵的推导过程。

    我们可以将整个投影过程分为两个部分,第一部分是从Frustum内一点投影到近剪裁平面的过程,第二部分是由近剪裁平面缩放的过程。假设Frustum内一点P(x,y,z)在近剪裁平面上的投影是P'(x',y',z'),而P'经过缩放后的最终坐标设为P''(x",y",z")。假设所求的投影矩阵为M,那么根据矩阵乘法可知,如下等式成立。

    PM=P'',即

    先看第一部分,为了简化问题,我们考虑YOZ平面上的投影情况,见下图。设P(x, y, z)是Frustum内一点,它在近剪裁平面上的投影是P'(x', y', z')。(注意:D3D以近剪裁平面作为投影平面),设视锥体在Y方向的夹角为Θ。

     由上图可知,三角形OP'Q'与三角形OPQ相似,于是有如下等式成立。

    在看第二部分,将P'缩放的过程,假设投影平面的高度为H,由于转换后cuboid的高度为2。所以有

    又因为投影平面的纵横比为Aspect,所以

    最后看z'',当Frustum内的点投影到近剪裁平面的时候,实际上这个z'值已经没有意义了,因为所有位于近剪裁平面上的点,其z'值都是n,看起来我们甚至可以抛弃这个z'值,可以么?当然不行!别忘了后面还有深度测试呢。由第一幅图可知,所有位于线段p'p上的点,最终都会投影到p'点,那么如果这条线段上真的有多个点,如何确定最终保留哪一个呢?当然是离观察这最近的这个了,也就是深度值(z值)最小的。所以z'坐标可以直接保存p点的z值。因为在光栅化之前,我们需要对z坐标的倒数进行插值(原因请参见Mathematics for 3D Game Programming and Computer Grahpics 3rd section 5.4),所以可以将z''写成z的一次表达式形式,如下

    在映射前,z的范围是[n,f],这里n和f分别是近远两个剪裁平面到原点的距离,在映射后,z''的范围是[0,1],将数据代入上面的一次式,可得下面的方程组

    解这个方程组得到

    所以

    整理一下得

    将X'',y'',z''代入最开始的矩阵乘法等式中得

    由上式可见,x'',y'',z''都除以了Pz,于是我们将他们再乘以Pz(这并不该变齐次坐标的大小),得到如下等式。

    注意这里,x即Px,y即Py,z即Pz,解矩阵的每一列得到

    于是所求矩阵为

    代码

    一般来说,在程序中我们通常给定四个参数来求透视投影矩阵,分别是y方向的视角,纵横比,近剪裁平面到原点的距离及远剪裁平面到原点的距离,通过这四个参数即可求出上面的矩阵,代码如下。

    复制代码
    D3DXMATRIX BuildProjectionMatrix(float fov, float aspect, float zn, float zf)
    {
        D3DXMATRIX proj;
        ZeroMemory(&proj, sizeof(proj));
    
        proj.m[0][0] = 1 / (tan(fov * 0.5f) *aspect) ;
        proj.m[1][1] = 1 / tan(fov * 0.5f) ;
        proj.m[2][2] = zf / (zf - zn) ;
        proj.m[2][3] = 1.0f; 
        proj.m[3][2] = (zn * zf) / (zn - zf);
    
        return proj ;
    }
    复制代码

    矩阵求解完毕,现在可以用如下代码试试效果,这和使用D3D函数D3DXMatrixPerspectiveFovLH所得效果是一致的。

    D3DXMATRIX proj = BuildProjectionMatrix(D3DX_PI / 4, 1.0f, 1.0f, 1000);
    g_pd3dDevice->SetTransform(D3DTS_PROJECTION, &proj) ;

    Happy Coding!!!

  • 相关阅读:
    Hadoop 学习笔记 (十) hadoop2.2.0 生产环境部署 HDFS HA Federation 含Yarn部署
    hadoop 2.x 安装包目录结构分析
    词聚类
    Hadoop 学习笔记 (十一) MapReduce 求平均成绩
    Hadoop 学习笔记 (十) MapReduce实现排序 全局变量
    Hadoop 学习笔记 (九) hadoop2.2.0 生产环境部署 HDFS HA部署方法
    Visual Studio Code 快捷键大全(Windows)
    Eclipse安装教程 ——史上最详细安装Java &Python教程说明
    jquery操作select(取值,设置选中)
    $.ajax 中的contentType
  • 原文地址:https://www.cnblogs.com/zhangbaochong/p/5388792.html
Copyright © 2011-2022 走看看