题目链接:
gcd
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
Problem Description
Little White learned the greatest common divisor, so she plan to solve a problem: given x, n,
query ∑gcd(xa−1,xb−1) (1≤a,b≤n)
query ∑gcd(xa−1,xb−1) (1≤a,b≤n)
Input
The first line of input is an integer T ( 1≤T≤300)
For each test case ,the single line contains two integers x and n ( 1≤x,n≤1000000)
For each test case ,the single line contains two integers x and n ( 1≤x,n≤1000000)
Output
For each testcase, output a line, the answer mod 1000000007
Sample Input
5
3 1
4 2
8 7
10 5
10 8
Sample Output
2
24
2398375
111465
111134466
题意:
求这个式子的值;
思路:
完全懵逼;看了题解才知道gcd(xa-1,xb-1)=xgcd(a,b)-1;好像以前在哪看过这个式子;
然后就变成了喜闻乐见的求和式子了.∑∑xgcd(a,b)-1;跟欧拉函数联系起来啦num[i]={gcd(a,b)==i的对数1<=a,b<=n}={gcd(a,b)==1的对数1<=a,b<=n/i}
欧拉函数啊;num[i]=2*{phi[1]+phi[2]+...+phi[n/i]}-1;这就是求∑num[i]*(xi-1)的和;再遍历一遍求答案还会超时;题解说要按n/i的值分成等比数列再求;就像那个约瑟夫变形问题按商分成求等差数列和一样;那就分层求好了,快速幂求逆,注意x==1的情况,最最重要的是要得到第一个那个公式;
AC代码:
/************************************************
┆ ┏┓ ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃ ┃ ┆
┆┃ ━ ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃ ┃ ┆
┆┃ ┻ ┃ ┆
┆┗━┓ ┏━┛ ┆
┆ ┃ ┃ ┆
┆ ┃ ┗━━━┓ ┆
┆ ┃ AC代马 ┣┓┆
┆ ┃ ┏┛┆
┆ ┗┓┓┏━┳┓┏┛ ┆
┆ ┃┫┫ ┃┫┫ ┆
┆ ┗┻┛ ┗┻┛ ┆
************************************************ */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('
');
}
const LL mod=1e9+7;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=1e6+10;
const int maxn=1e5+4;
const double eps=1e-8;
int phi[N];
LL sum[N];
inline void Init()
{
phi[1]=1;
sum[1]=1;
For(i,2,N-1)
{
if(!phi[i])
{
for(int j=i;j<N;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
sum[i]=sum[i-1]+phi[i];
}
}
LL pow_mod(LL x,int y)
{
LL s=1,base=x;
while(y)
{
if(y&1)s=s*base%mod;
base=base*base%mod;
y>>=1;
}
return s;
}
int main()
{
Init();
int t,n;
LL x;
read(t);
while(t--)
{
read(x);read(n);
LL ans=0;
if(x==1)cout<<"0
";
else
{
LL temp=pow_mod(x-1,(int)mod-2);
int l=1,r;
while(l<=n)
{
r=n/(n/l);
LL g=((pow_mod(x,r+1)-pow_mod(x,l)+mod)*temp-(r-l+1)+mod)%mod;
ans=(ans+(2*sum[n/l]-1)%mod*g)%mod;
l=r+1;
}
cout<<ans<<"
";
}
}
return 0;
}