zoukankan      html  css  js  c++  java
  • Hdu 1068 Girls and Boys

    Girls and Boys

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 11656    Accepted Submission(s): 5464

    Problem Description

    the second year of the university somebody started a study on the romantic relations between the students. The relation “romantically involved” is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been “romantically involved”. The result of the program is the number of students in such a set.

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description:

    the number of students
    the description of each student, in the following format
    student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...
    or
    student_identifier:(0)

    The student_identifier is an integer number between 0 and n-1, for n subjects.
    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7

    0: (3) 4 5 6

    1: (2) 4 6

    2: (0)

    3: (0)

    4: (2) 0 1

    5: (1) 0

    6: (2) 0 1

    3

    0: (2) 1 2

    1: (1) 0

    2: (1) 0

    Sample Output

    5

    2

    #include <stdio.h>  
    #include <string.h>  
      
    #define maxn 1010    
    int n, B[maxn];  
    bool vis[maxn];  
    int head[maxn], id;  
    struct Node {  
        int v, next;  
    } E[maxn * maxn];  
      
    void addEdge(int u, int v) {  
        E[id].v = v; E[id].next = head[u];  
        head[u] = id++;  
    }  
      
    void getMap() {  
        int i, u, k, v; id = 0;  
        memset(head, -1, sizeof(int) * n);  
        memset(B, -1, sizeof(int) * n);  
        for(u = 0; u < n; ++u) {  
            scanf("%*d: (%d)", &k);  
            while(k--) {  
                scanf("%d", &v);  
                addEdge(u, v);  
            }  
        }  
    }  
      
    int findPath(int x) {  
        int i, v;  
        for(i = head[x]; i != -1; i = E[i].next) {  
            if(!vis[v = E[i].v]) {  
                vis[v] = 1;  
                if(B[v] == -1 || findPath(B[v])) {  
                    B[v] = x; return 1;  
                }  
            }  
        }  
        return 0;  
    }  
      
    int MaxMatch() {  
        int ans = 0, i;  
        for(i = 0; i < n; ++i) {  
            memset(vis, 0, sizeof(bool) * n);  
            ans += findPath(i);  
        }  
        return ans;  
    }  
      
    void solve() {  
        printf("%d
    ", n - (MaxMatch() >> 1));  
    }  
      
    int main() {  
      
        while(scanf("%d", &n) == 1) {  
            getMap();  
            solve();  
        }  
        return 0;  
    }  
    

      

  • 相关阅读:
    《C#高级编程》读书笔记(十五):任务、线程和同步之二 任务
    sklearn训练模型的保存与加载
    机器学习中样本不平衡的处理方法
    剑指Offer(四):重建二叉树
    剑指Offer(三):从尾到头打印链表
    机器学习笔记(一)----基本概念
    100 个网络基础知识普及,看完成半个网络高手
    协方差基本概念及公式
    正态分布基本概念及公式
    np.random.multivariate_normal方法浅析
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7057842.html
Copyright © 2011-2022 走看看