zoukankan      html  css  js  c++  java
  • Hdu 1159 Common Subsequence

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 38676    Accepted Submission(s): 17770

    Problem Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc abfcab

    programming contest

    abcd mnp

    Sample Output

    4

    2

    0

    #include<string.h>
    #include<stdio.h>
    #define max(a,b) a>b?a:b char first[1050],second[1050];
    int dp[1050][1050];
    int main()
    {
        while(scanf("%s %s",first,second)!=EOF)
        {
            int len1=strlen(first);
            int len2=strlen(second);
            for(int i=0;i<=len1;i++)
                dp[i][0]=0;
            for(int i=0;i<=len2;i++)
                dp[0][i]=0;
            for(int i=1;i<=len1;i++)
                for(int j=1;j<=len2;j++)
                    if(first[i-1]==second[j-1])
                        dp[i][j]=dp[i-1][j-1]+1;
                    else 
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            printf("%d
    ",dp[len1][len2]);
        }
        return 0;
    } 
    

      

  • 相关阅读:
    工作的价值
    面对伤害该不该回击
    建议
    利用私有的API获得手机上所安装的所有应用信息(包括版本,名称,bundleID,类型)
    你必须知道的HTTP错误
    静态库制作
    MDM证书申请的流程
    IOS客户端实现RSA加密
    获得appstore里面app的最新的版本信息,进行版本更新
    C语言实现简单php自定义扩展
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7057898.html
Copyright © 2011-2022 走看看