[102] Binary Tree Level Order Traversal [Medium-Easy]
[107] Binary Tree Level Order Traversal II [Medium-Easy]
这俩题没啥区别。都是二叉树层级遍历。BFS做。
可以用一个队列或者两个队列实现。我觉得一个队列实现的更好。(一个队列实现的重点是利用队列的size来看当前层级的节点数)
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 vector<vector<int>> levelOrder(TreeNode* root) { 13 vector<vector<int>> ans; 14 if (!root) { 15 return ans; 16 } 17 queue<TreeNode *> q; 18 q.push(root); 19 while (!q.empty()) { 20 size_t sz = q.size(); 21 vector<int> level; 22 for (auto i = 0; i < sz; ++i) { 23 TreeNode* cur = q.front(); 24 q.pop(); 25 level.push_back(cur->val); 26 if (cur->left) { 27 q.push(cur->left); 28 } 29 if (cur->right) { 30 q.push(cur->right); 31 } 32 } 33 ans.push_back(level); 34 } 35 return ans; 36 } 37 };
[101] Symmetric Tree [Easy]
判断一棵树是不是对称树。为啥还是不能一下子就写出来。。。
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 bool isSymmetric(TreeNode* root) { 13 if (!root) return true; 14 return isSymmetric(root->left, root->right); 15 } 16 bool isSymmetric(TreeNode* left, TreeNode* right) { 17 if (!left && !right) { 18 return true; 19 } 20 else if (left == nullptr || right == nullptr) { 21 return false; 22 } 23 else if (left->val != right->val){ 24 return false; 25 } 26 return isSymmetric(left->left, right->right) && isSymmetric(left->right, right->left); 27 } 28 29 };
[542] 01 Matrix [Medium]
给个01矩阵,找到每个cell到 0 entry的最短距离。
从第一个0元素开始BFS, 用队列记录每个 0 元素的位置, 遍历队列,更新一个周围的元素之后,把更新的元素也进队。
队列一定是越来越短的,因为你每pop一个出来,需要更新元素才能push
1 class Solution { 2 public: 3 vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) { 4 vector<vector<int>> ans; 5 //const int m[4] = {1, 0, -1, 0}; //top - buttom 6 //const int n[4] = {0, 1, 0, -1}; //left - right 7 const vector<pair<int, int>> dir{{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; 8 if (matrix.size() == 0 || matrix[0].size() == 0) { 9 return ans; 10 } 11 const int rows = matrix.size(), cols = matrix[0].size(); 12 queue<pair<int, int>> q; 13 for (size_t i = 0; i < rows; ++i) { 14 for (size_t j = 0; j < cols; ++j) { 15 if (matrix[i][j] != 0) { 16 matrix[i][j] = INT_MAX; 17 } 18 else { 19 q.push(make_pair(i, j)); 20 } 21 } 22 } 23 while (!q.empty()) { 24 pair<int, int> xy = q.front(); 25 q.pop(); 26 for(auto ele: dir) { 27 int new_x = xy.first + ele.first, new_y = xy.second + ele.second; 28 if (new_x >= 0 && new_x < rows && new_y >= 0 && new_y < cols) { 29 if (matrix[new_x][new_y] > matrix[xy.first][xy.second] + 1) { 30 matrix[new_x][new_y] = matrix[xy.first][xy.second] + 1; 31 q.push({new_x, new_y}); 32 } 33 } 34 } 35 } 36 return matrix; 37 } 38 };