zoukankan      html  css  js  c++  java
  • HDKV: HighDimensional Similarity Query in KeyValue Stores

    文章集中于key-value store

    Locality-sensitive hashing (LSH) is a method of performing probabilistic dimension reduction of high-dimensional data. The basic idea is to hash the input items so that similar items are mapped to the same buckets with high probability (the number of buckets being much smaller than the universe of possible input items).

    Stable distributions

    The hash function [8] h_{\mathbf{a},b} (\boldsymbol{\upsilon}) : 
\mathcal{R}^d
\to \mathcal{N}  maps a d dimensional vector \boldsymbol{\upsilon} onto a set of integers. Each hash function in the family is indexed by a choice of random \mathbf{a} and b where \mathbf{a} is a d dimensional vector with entries chosen independently from a stable distribution and b is a real number chosen uniformly from the range [0,r]. For a fixed \mathbf{a},b the hash function h_{\mathbf{a},b} is given by h_{\mathbf{a},b} (\boldsymbol{\upsilon}) = \left \lfloor
\frac{\mathbf{a}\cdot \boldsymbol{\upsilon}+b}{r} \right \rfloor .

    Other construction methods for hash functions have been proposed to better fit the data. [9] In particular k-means hash functions are better in practice than projection-based hash functions, but without any theoretical guarantee.

    The key idea of locality-sensitive hash (LSH) is to hash the points using several hash functions so as to ensure that, for each function, the probability of
    collision is much higher for objects which are close to each other than for those which are far apart. Then, one can determine near neighbors by hashing the
    query point and retrieving elements stored in buckets containing that point.

  • 相关阅读:
    Linux 的硬链接与软链接
    Django补遗(一)
    Django之Form组件
    Django进阶(三)
    Django进阶(二)
    Web请求提交页面--防重提交
    Lucene的搭建(3)
    Lucene的搭建(2)
    Redis-cluster集群搭建
    Redis安装
  • 原文地址:https://www.cnblogs.com/zhangzhang/p/2355143.html
Copyright © 2011-2022 走看看