当 $x>0$ 时, 由 $$eex ea int_0^infty e^{-xsex{t+frac{1}{t}}} d t &leq int_0^1 e^{-frac{x}{t}} d t +int_1^infty e^{-xt} d t\ &=int_1^infty frac{1}{se^{xs}} d s +int_1^infty e^{-xt} d t eea eeex$$ 即知积分收敛.