zoukankan      html  css  js  c++  java
  • [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4

    (1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive. In this decomposition the positive part $P$ is unique, $P=|A|$. The unitary part $U$ is unique if $A$ is invertible.

     

    (2). An operator $A$ is normal if and only if the factors $U$ and $P$ in the polar decomposition of $A$ commute.

     

    (3). We have derived the polar decomposition from the singular value decomposition. Show that it is possible to derive the latter from the former.

     

    Solution.  

     

    (1). By the singular value decomposition, there exists unitaries $W$ and $Q$ such that $$ex A=WSQ^*, eex$$ and thus $$ex A=WQ^*cdot QSQ^*. eex$$ Setting $$ex U=WQ^*,quad P=QSQ^*=|A|, eex$$ we are completed.

     

    (2). $ a$: By density argument, we may assume $A$ is invertible. Suppose $A$ is normal and $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$ex A=VvLm V^*,quad vLa=diag(lm_1,cdots,lm_n). eex$$ By the uniqueness part of (1), $$ex U=Vsgn(vLm)V^*,quad P=V|vLm|V^*, eex$$ and thus $UP=PU=A$. $la$: Suppose $A=UP$ is the polar decomposition with $UP=PU$, then $$ex A^*A=PU^*UP=P^2, eex$$ $$ex AA^*=UPcdot(UP)^*=PUcdot (PU)^* =PUU^*P=P^2. eex$$

     

    (3). Suppose $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$ex P=Vdiag(s_1,cdots,s_n)V^*,quad s_igeq 0. eex$$ Hence, $$ex A=UVcdot diag(s_1,cdots,s_n)cdot V^*. eex$$

  • 相关阅读:
    celery 转自:https://www.cnblogs.com/pyedu/p/12461819.html
    k8s 学习笔记
    linux 学习笔记3
    yaml initc
    vi 块操作
    curl
    知名IT互联网公司
    ajax 上传文件给webapi(带basic认证)
    C# 后台请求api
    mvc 母版页保持不刷新
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4105352.html
Copyright © 2011-2022 走看看