zoukankan      html  css  js  c++  java
  • [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4

    (1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive. In this decomposition the positive part $P$ is unique, $P=|A|$. The unitary part $U$ is unique if $A$ is invertible.

     

    (2). An operator $A$ is normal if and only if the factors $U$ and $P$ in the polar decomposition of $A$ commute.

     

    (3). We have derived the polar decomposition from the singular value decomposition. Show that it is possible to derive the latter from the former.

     

    Solution.  

     

    (1). By the singular value decomposition, there exists unitaries $W$ and $Q$ such that $$ex A=WSQ^*, eex$$ and thus $$ex A=WQ^*cdot QSQ^*. eex$$ Setting $$ex U=WQ^*,quad P=QSQ^*=|A|, eex$$ we are completed.

     

    (2). $ a$: By density argument, we may assume $A$ is invertible. Suppose $A$ is normal and $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$ex A=VvLm V^*,quad vLa=diag(lm_1,cdots,lm_n). eex$$ By the uniqueness part of (1), $$ex U=Vsgn(vLm)V^*,quad P=V|vLm|V^*, eex$$ and thus $UP=PU=A$. $la$: Suppose $A=UP$ is the polar decomposition with $UP=PU$, then $$ex A^*A=PU^*UP=P^2, eex$$ $$ex AA^*=UPcdot(UP)^*=PUcdot (PU)^* =PUU^*P=P^2. eex$$

     

    (3). Suppose $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$ex P=Vdiag(s_1,cdots,s_n)V^*,quad s_igeq 0. eex$$ Hence, $$ex A=UVcdot diag(s_1,cdots,s_n)cdot V^*. eex$$

  • 相关阅读:
    Docker笔记
    Fedora dnf配置
    Vue杂谈
    各类技术集锦
    在.NET Core 里使用 BouncyCastle 的DES加密算法
    Srapy爬虫之必备知识
    scrapy爬虫之环境安装
    Git很简单--图解攻略
    Vue.js下载方式及基本概念
    ajax与jsonp定义及使用方法
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4105352.html
Copyright © 2011-2022 走看看