zoukankan      html  css  js  c++  java
  • [家里蹲大学数学杂志]第409期与正弦对数有关的一个积分不等式

    试证: $$ex 0<int_0^infty frac{sin t}{ln(1+x+t)} d t<frac{2}{ln(1+x)}. eex$$

     

    证明: $$eex ea int_0^infty frac{sin t}{ln(1+x+t)} d t &=sum_{k=0}^inftysez{ int_{2kpi}^{2kpi+pi} frac{sin t}{ln(1+x+t)} d t +int_{2kpi+pi}^{2kpi+2pi} frac{sin t}{ln(1+x+t)} d t}\ &=sum_{k=0}^infty sez{int_0^pi frac{sin s}{ln(1+x+2kpi +s)} d s -int_0^pifrac{sin s}{ln(1+x+2kpi+pi+s)} d s}\ &=sum_{k=0}^infty int_0^pi sin ssez{ frac{1}{ln(1+x+2kpi+s)}-frac{1}{ln(1+x+2kpi+pi+s)}} d s\ &>0. eea eeex$$ 另一方面, $$eex ea int_0^infty frac{sin s}{ln(1+x+s)} d s&=int_0^pi sin ssez{ frac{1}{ln(1+x+2kpi+s)} -frac{1}{ln (1+x+2kpi+pi+s)}} d s\ &<int_0^pi sin ssez{ frac{1}{ln(1+x+2kpi)} -frac{1}{ln (1+x+2kpi+pi)}} d s\ &quadsex{f(s)equivfrac{1}{ln(1+x+2kpi+s)} -frac{1}{ln (1+x+2kpi+pi+s)} searrow}\ &<int_0^pi frac{sin s}{ln(1+x)} d s\ &=frac{2}{ln(1+x)}. eea eeex$$

  • 相关阅读:
    String painter HDU
    GCD Counting-树形DP
    XOR UVALive
    BZOJ-9-3295: [Cqoi2011]动态逆序对
    E
    Stars HDU
    二维单调队列(理想的正方形+修筑绿化带)
    P3622 [APIO2007]动物园
    COJ1160[一本通 5.3 例 1」Amount of Degrees
    [ZJOI2008]骑士
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4667918.html
Copyright © 2011-2022 走看看