大意:
给你一个n行m列的矩阵
1 2
1 1
每次操作可使一整行或一整列的一个数减少1(如果是0则不变)
问最少多少次操作会使所有的数变为零
分析:
该题很像poj消灭外星人的那道题
思路也差不很多
将x轴当左集合,y轴当右集合,边权值为所在点的数字
那么一条边就代表了矩阵中的一个点
只要找出最小的权值去覆盖所有的边就能把所有的数字变为零
也就是传说中的最小点权覆盖集
最小点权覆盖集 = 最大权匹配
KM跑一遍就可以了
但是需要注意的是如果两边点的个数不相等
那么我们用虚拟点代替就可以了
代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 using namespace std; 5 6 const int maxn = 205; 7 const int INF = 1000000000; 8 int n; 9 10 int W[maxn][maxn]; 11 int Lx[maxn], Ly[maxn]; 12 int Left[maxn]; 13 bool S[maxn], T[maxn]; 14 15 bool match(int i) { 16 S[i] = true; 17 for(int j = 1; j <= n; j++) if(Lx[i] + Ly[j] == W[i][j] && !T[j]) { 18 T[j] = true; 19 if(!Left[j] || match(Left[j])) { 20 Left[j] = i; 21 return true; 22 } 23 } 24 return false; 25 } 26 27 void update() { 28 int a = INF; 29 for(int i = 1; i <= n; i++) if(S[i]) 30 for(int j= 1; j <= n; j++) if(!T[j]) 31 a = min(a, Lx[i] + Ly[j] - W[i][j]); 32 for(int i = 1; i <= n; i++) { 33 if(S[i]) Lx[i] -= a; 34 if(T[i]) Ly[i] += a; 35 } 36 } 37 38 void KM() { 39 for(int i = 1; i <= n; i++) { 40 Left[i] = Lx[i] = Ly[i] = 0; 41 for(int j = 1; j <= n; j++) 42 Lx[i] = max(Lx[i], W[i][j]); 43 } 44 for(int i = 1; i<= n; i++) { 45 for(;;) { 46 for(int j = 1; j <= n; j++) S[j] = T[j] = 0; 47 if(match(i)) break; else update(); 48 } 49 } 50 } 51 52 int main() { 53 int num; 54 int m; 55 while(EOF != scanf("%d %d",&n, &m)) { 56 memset(W, 0, sizeof(W)); 57 for(int i = 1; i <= n; i++) { 58 for(int j = 1; j <= m; j++) { 59 scanf("%d",&num); 60 W[i][j] = num; 61 } 62 } 63 n = max(n, m); 64 KM(); 65 int ans = 0; 66 for(int i = 1; i <= n; i++) { 67 ans += Lx[i] + Ly[i]; 68 } 69 printf("%d ",ans); 70 } 71 return 0; 72 }
网络流代码:
1 #include <iostream> 2 #include <queue> 3 #include <cstdio> 4 #include <cstring> 5 #include <vector> 6 using namespace std; 7 8 const int maxn = 200 * 200 + 10; 9 const int INF = 1000000000; 10 11 struct Edge { 12 int from, to, cap, flow, cost; 13 }; 14 15 struct MCMF 16 { 17 int n, m, s, t; 18 vector<Edge> edges; 19 vector<int> G[maxn]; 20 21 int inq[maxn]; 22 int d[maxn]; 23 int p[maxn]; 24 int a[maxn]; 25 26 void init(int n) { 27 this -> n = n; 28 for(int i = 0; i < n; i++) G[i].clear(); 29 edges.clear(); 30 } 31 32 void AddEdge(int from, int to, int cap, int cost) { 33 edges.push_back((Edge) { from, to, cap, 0, cost } ); 34 edges.push_back((Edge) { to, from, 0, 0, -cost } ); 35 m = edges.size(); 36 G[from].push_back(m - 2); 37 G[to].push_back(m - 1); 38 } 39 40 bool BellmanFord(int s, int t, int &flow, int &cost) { 41 for(int i = 0; i < n; i++) d[i] = INF; 42 memset(inq, 0, sizeof(inq) ); 43 d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; 44 queue<int> Q; 45 Q.push(s); 46 while(!Q.empty()) { 47 int u = Q.front(); Q.pop(); 48 inq[u] = 0; 49 for(int i = 0; i < G[u].size(); i++) { 50 Edge &e = edges[G[u][i]]; 51 if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { 52 d[e.to] = d[u] + e.cost; 53 p[e.to] = G[u][i]; 54 a[e.to] = min(a[u], e.cap - e.flow); 55 if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; } 56 } 57 } 58 } 59 60 if(d[t] == INF) return false; 61 flow += a[t]; 62 cost += d[t] * a[t]; 63 int u = t; 64 while(u != s) { 65 edges[p[u]].flow += a[t]; 66 edges[p[u] ^ 1].flow -= a[t]; 67 u = edges[p[u]].from; 68 } 69 return true; 70 } 71 72 int MinCost(int s, int t) { 73 //this -> s = s; this -> t = t; 74 int flow = 0, cost = 0; 75 while(BellmanFord(s, t, flow, cost)){}; 76 return cost; 77 } 78 }; 79 80 MCMF g; 81 82 int main() { 83 int n, m; 84 int num; 85 while(EOF != scanf("%d %d",&n, &m)) { 86 int s = 0; int t = n + m + 1; 87 g.init(n * m + 10); 88 for(int i = 1; i <= n; i++) { 89 for(int j = 1; j <= m; j++) { 90 scanf("%d",&num); 91 g.AddEdge(i, j + n, 1,-num); 92 } 93 } 94 for(int i = 1; i <= n; i++) { 95 g.AddEdge(s, i, 1, 0); 96 } 97 for(int j = 1; j <= m; j++) { 98 g.AddEdge(j + m, t, 1, 0); 99 } 100 printf("%d ",-g.MinCost(s, t)); 101 } 102 return 0; 103 }