zoukankan      html  css  js  c++  java
  • 力扣01背包和完全背包理论基础

    背包最大重量为4,物品如下,问背包能背的物品最大价值是多少?

     二维dp数组01背包

    1.确定dp数组以及下标的含义

    dp[i][j]表示从下标为[0-i]的物品中任意取,放进容量为j的背包,价值总和最大为多少

    2.确定递推公式

    两个方向推导

    • 不放物品i:dp[i][j]=dp[i-1][j]
    • 放物品:dp[i][j]=dp[i-1][j-weight[i]] + value[i]

    dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

    3.dp数组初始化

    如果背包容量j是0的话,dp[i][0],无论选取哪些物品,背包价值总和一定为0

     dp[0][j],i为0,存放编号0的物品时,各个容量的背包能存放的最大价值

    • j<weight[0],dp[0][j] = 0
    • j>=weight[0] ,  dp[0][j] = value[0]

     4.确定遍历顺序

    从左到右,从上到下

    5.举例推导

     代码:

    public static void main(String[] args) {
            int[] weight = {1, 3, 4};
            int[] value = {15, 20, 30};
            int bagSize = 4;
            testWeightBagProblem(weight, value, bagSize);
        }
    
        public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
            int wLen = weight.length, value0 = 0;
            //定义dp数组:dp[i][j]表示背包容量为j时,前i个物品能获得的最大价值
            int[][] dp = new int[wLen][bagSize + 1];
              for (int j = weight[0]; j <= bagWeight; j++) {
                dp[0][j] = value[0];
           }
    //遍历顺序:先遍历物品,再遍历背包容量
            for (int i = 1; i < wLen; i++){
                for (int j = 0; j <= bagSize; j++){
                    if (j < weight[i]){
                        dp[i][j] = dp[i - 1][j];
                    }else{
                        dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i]);
                    }
                }
            }
            //打印dp数组
            for (int i = 0; i <= wLen; i++){
                for (int j = 0; j <= bagSize; j++){
                    System.out.print(dp[i][j] + " ");
                }
                System.out.print("\n");
            }
        }

    优化:

    具体实现:

    1.确定dp数组的定义

    dp[j]:容量为j的背包,所背的物品价值可以最大为dp[j]

    2.一维dp数组的递推公式

    两个选择:

    (1)保持自己,dp[j]相当于 二维dp数组中的dp[i-1][j],即不放物品i

    (2)dp[j - weight[i]] + value[i],把不合适的东西掏出来让背包变成刚好缺物品i重量的背包,放物品i

    3.初始化

    dp数组内元素都初始化为0

    4.遍历顺序

    倒序遍历:保证物品i只被放入一次

    如果是正序的话:

    dp[1] = dp[1 - weight[0]] + value[0] = 15

    dp[2] = dp[2 - weight[0]] + value[0] = 30

    物品0被放入两次

    如果是倒序的话:

    dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

    dp[1] = dp[1 - weight[0]] + value[0] = 15

    5.举例

    代码:

    public static void main(String[] args) {
            int[] weight = {1, 3, 4};
            int[] value = {15, 20, 30};
            int bagWight = 4;
            testWeightBagProblem(weight, value, bagWight);
        }
    
        public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
            int wLen = weight.length;
            //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
            int[] dp = new int[bagWeight + 1];
            //遍历顺序:先遍历物品,再遍历背包容量
            for (int i = 0; i < wLen; i++){
                for (int j = bagWeight; j >= weight[i]; j--){
                    dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
                }
            }
            //打印dp数组
            for (int j = 0; j <= bagWeight; j++){
                System.out.print(dp[j] + " ");
            }
        }

    完全背包

    完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。问背包能背的物品最大价值是多少?

    01背包和完全背包唯一不同就是体现在遍历顺序上

    01背包核心代码

    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }

    01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

    而完全背包的物品是可以添加多次的,所以要从小到大去遍历

    // 先遍历物品,再遍历背包
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = weight[i]; j < bagWeight ; j++) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    
        }
    }

    举例:

    //先遍历物品,再遍历背包
        private static void testCompletePack(){
            int[] weight = {1, 3, 4};
            int[] value = {15, 20, 30};
            int bagWeight = 4;
            int[] dp = new int[bagWeight + 1];
            for (int i = 0; i < weight.length; i++){
                for (int j = 1; j <= bagWeight; j++){
                    if (j - weight[i] >= 0){
                        dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
                    }
                }
            }
            for (int maxValue : dp){
                System.out.println(maxValue + "   ");
            }
        }
    
        //先遍历背包,再遍历物品
        private static void testCompletePackAnotherWay(){
            int[] weight = {1, 3, 4};
            int[] value = {15, 20, 30};
            int bagWeight = 4;
            int[] dp = new int[bagWeight + 1];
            for (int i = 1; i <= bagWeight; i++){
                for (int j = 0; j < weight.length; j++){
                    if (i - weight[j] >= 0){
                        dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
                    }
                }
            }
            for (int maxValue : dp){
                System.out.println(maxValue + "   ");
            }
        }
  • 相关阅读:
    JAVA THINGKING (二)随笔
    HP-UX磁带备份错误收集
    在cocos2d-x界面中嵌入Android的WebView
    PIMPL设计模式的理解和使用
    10453 Make Palindrome (dp)
    linux swap 分区调控(swap分区 lvm管理)
    如何让ios app支持32位和64位?
    数据持久化(二)存取沙箱文件
    [置顶] lvs-tun隧道模式搭建
    【D3.V3.js系列教程】--(十五)SVG基本图形绘制
  • 原文地址:https://www.cnblogs.com/zhaojiayu/p/15609994.html
Copyright © 2011-2022 走看看