提到天气预报服务,我们第一反应是很简单的一个服务啊,目前网上有大把的天气预报 API 可以直接使用,有必要去使用 Knative 搞一套吗?杀鸡用牛刀?先不要着急,我们先看一下实际的几个场景需求:
- 场景需求1:根据当地历年的天气信息,预测明年大致的高温到来的时间
- 场景需求2:近来天气多变,如果明天下雨,能否在早上上班前,给我一个带伞提醒通知
- 场景需求3:领导发话:最近经济不景气,公司财务紧张,那个服务器,你们提供天气、路况等服务的那几个小程序一起用吧,但要保证正常提供服务。
从上面的需求,我们其实发现,要做好一个天气预报的服务,也面临内忧(资源紧缺)外患(需求增加),并不是那么简单的。不过现在更不要着急,我们可以使用 Knative 帮你解决上面的问题。
关键词:天气查询、表格存储,通道服务,事件通知
场景需求
首先我们来描述一下我们要做的天气服务场景需求:
1. 提供对外的天气预报 RESTful API
- 根据城市、日期查询(支持未来 3 天)国内城市天气信息
- 不限制查询次数,支持较大并发查询(1000)
2. 天气订阅提醒
- 订阅国内城市天气信息,根据实际订阅城市区域,提醒明天下雨带伞
- 使用钉钉进行通知
整体架构
有了需求,那我们就开始如何基于 Knative 实现天气服务。我们先看一下整体架构:
- 通过 CronJob 事件源,每隔 3个 小时定时发送定时事件,将国内城市未来3天的天气信息,存储更新到表格存储
- 提供 RESTful API 查询天气信息
- 通过表格存储提供的通道服务,实现 TableStore 事件源
- 通过 Borker/Trigger 事件驱动模型,订阅目标城市天气信息
- 根据订阅收到的天气信息进行钉钉消息通知。如明天下雨,提示带伞等
提供对外的天气预报 RESTful API
对接高德开放平台天气预报 API
查询天气的 API 有很多,这里我们选择高德开放平台提供的天气查询 API,使用简单、服务稳定,并且该天气预报 API 每天提供 100000 免费的调用量,支持国内 3500 多个区域的天气信息查询。另外高德开放平台,除了天气预报,还可以提供 ip 定位、搜索服务、路径规划等,感兴趣的也可以研究一下玩法。
登录高德开放平台: https://lbs.amap.com, 创建应用,获取 Key 即可:
获取Key之后,可以直接通过url访问:https://restapi.amap.com/v3/weather/weatherInfo?city=110101&extensions=all&key=<用户key>,返回天气信息数据如下:
定时同步并更新天气信息
同步并更新天气信息
该功能主要实现对接高德开放平台天气预报 API, 获取天气预报信息,同时对接阿里云表格存储服务(TableStore),用于天气预报数据存储。具体操作如下:
- 接收 CloudEvent 定时事件
- 查询各个区域天气信息
- 将天气信息存储或者更新到表格存储
在 Knative 中,我们可以直接创建服务如下:
关于服务具体实现参见 GitHub 源代码:https://github.com/knative-sample/weather-store
创建定时事件
这里或许有疑问:为什么不在服务中直接进行定时轮询,非要通过 Knative Eventing 搞一个定时事件触发执行调用?那我们要说明一下,Serverless 时代下就该这样玩-按需使用。千万不要在服务中按照传统的方式空跑这些定时任务,亲,这是在持续浪费计算资源。
言归正传,下面我们使用 Knative Eventing 自带的定时任务数据源(CronJobSource),触发定时同步事件。
创建 CronJobSource 资源,实现每 3 个小时定时触发同步天气服务(weather-store),WeatherCronJob.yaml 如下:
执行命令:
现在我们登录阿里云表格存储服务,可以看到天气预报数据已经按照城市、日期的格式同步进来了。
提供天气预报查询 RESTful API
有了这些天气数据,可以随心所欲的提供属于我们自己的天气预报服务了(感觉像是承包了一块地,我们来当地主),这里没什么难点,从表格存储中查询对应的天气数据,按照返回的数据格式进行封装即可。
在 Knative 中,我们可以部署 RESTful API 服务如下:
具体实现源代码 GitHub 地址:https://github.com/knative-sample/weather-service
查询天气 RESTful API:
- 请求URL
GET /api/weather/query
- 返回结果
查询:杭州,2019-09-26天气预报信息示例
测试地址:http://weather-service.default.knative.kuberun.com/api/weather/query?cityCode=330100&date=2019-11-06
另外城市区域代码表可以在上面提供的源代码 GitHub 中可以查看,也可以到高德开放平台中下载:https://lbs.amap.com/api/webservice/download
天气订阅提醒
首先我们介绍一下表格存储提供的通道服务。通道服务(Tunnel Service)是基于表格存储数据接口之上的全增量一体化服务。通道服务为您提供了增量、全量、增量加全量三种类型的分布式数据实时消费通道。通过为数据表建立数据通道,您可以简单地实现对表中历史存量和新增数据的消费处理。通过数据通道可以进行数据同步、事件驱动、流式数据处理以及数据搬迁。这里事件驱动正好契合我们的场景。
自定义 TableStore 事件源
在 Knative 中自定义事件源其实很容易,可以参考官方提供的自定义事件源的实例:https://github.com/knative/docs/tree/master/docs/eventing/samples/writing-a-source。
我们这里定义数据源为 AliTablestoreSource。代码实现主要分为两部分:
- 资源控制器-Controller:接收 AliTablestoreSource 资源,在通道服务中创建 Tunnel。
- 事件接收器-Receiver:通过 Tunnel Client 监听事件,并将接收到的事件发送到目标服务( Broker)
关于自定义 TableStore 事件源实现参见 GitHub 源代码:https://github.com/knative-sample/tablestore-source
部署自定义事件源服务如下:
从 https://github.com/knative-sample/tablestore-source/tree/master/config 中可以获取事件源部署文件,执行下面的操作
部署完成之后,我们可以看资源控制器已经开始运行:
创建事件源
由于我们是通过 Knative Eventing 中 Broker/Trigger 事件驱动模型对天气事件进行处理。首先我们创建用于数据接收的 Broker 服务。
创建 Broker
创建事件源实例
这里需要说明一下,创建事件源实例其实就是在表格存储中创建通道服务,那么就需要配置访问通道服务的地址、accessKeyId和accessKeySecret,这里参照格式:{ "url":"https://xxx.cn-beijing.ots.aliyuncs.com/", "accessKeyId":"xxxx","accessKeySecret":"xxxx" }
设置并进行base64编码。将结果设置到如下 Secret 配置文件alitablestore
属性中:
创建 RBAC 权限
创建 AliTablestoreSource 实例,这里我们设置接收事件的 sink
为上面创建的 Broker 服务。
创建完成之后,我们可以看到运行中的事件源:
订阅事件和通知提醒
创建天气提醒服务
如何进行钉钉通知呢,我们可以创建一个钉钉的群组(可以把家里人组成一个钉钉群,天气异常时,给家人一个提醒),添加群机器人:
获取 webhook :
这里我们假设北京(110000),日期:2019-10-13, 如果天气有雨,就通过钉钉发送通知提醒,则服务配置如下:
关于钉钉提醒服务具体实现参见 GitHub 源代码:https://github.com/knative-sample/dingtalk-weather-service
创建订阅
最后我们创建 Trigger订阅天气事件,并且触发天气提醒服务:
订阅之后,如果北京(110000),日期:2019-10-13, 天气有雨,会收到如下的钉钉提醒:
这里其实还有待完善的地方:
- 是否可以基于城市进行订阅(只订阅目标城市)?
- 是否可以指定时间发送消息提醒(当天晚上 8 点准时推送第 2 天的天气提醒信息)?
有兴趣的可以继续完善当前的天气服务功能。
总结
通过上面的介绍,大家对如何通过 Knative 提供天气查询、 订阅天气信息,钉钉推送通知提醒应该有了更多的体感,其实类似的场景我们有理由相信通过 Knative Serverless 可以帮你做到资源利用游刃有余。欢迎持续关注。
作者信息:元毅,阿里云容器平台高级开发工程师,负责阿里云容器平台 Knative 相关工作。
本文作者:元毅
本文为云栖社区原创内容,未经允许不得转载。