zoukankan      html  css  js  c++  java
  • 七夕节

    Problem Description
    七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们的另一半是谁吗?那就按照告示上的方法去找吧!"
    人们纷纷来到告示前,都想知道谁才是自己的另一半.告示如下:



    数字N的因子就是所有比N小又能被N整除的所有正整数,如12的因子有1,2,3,4,6.
    你想知道你的另一半吗?
     

    Input
    输入数据的第一行是一个数字T(1<=T<=500000),它表明测试数据的组数.然后是T组测试数据,每组测试数据只有一个数字N(1<=N<=500000).
     

    Output
    对于每组测试数据,请输出一个代表输入数据N的另一半的编号.
     

    Sample Input
    3
    2
    10
    20
     

    Sample Output
    1
    8
    22

    第一种做法解释a==m^2,若有大于m的数c是a的因子,则一定有小于m的数b,使得b*c=a;且若有1个小于m的因数c,则一定有一个大于m的因子b,使得b*c=a;

      证明 

              设c=m+n,  则有m^2/m+n=a; a  一定小于m。

    (一)

    #include<iostream>
    #include<cmath>
    using namespace std;
    void main()
    {
        int n;
        int a;
        cin>>n;
        for(int i=0;i<n;i++)
        {
            cin>>a;
            int sum=0;
            float s=sqrt(1.0*a);
            for(int j=1;j<=s;j++)
            {
                if(a%j==0)
                {
                    sum+=j;
                    int t=a/j;
                    if(t!=a && t!=j) sum+=t;
                }
            }
            cout<<sum<<endl;
        }
    }

    (二)

    打表:
    打表,用类似于筛选思想的做法,

    筛选法

      筛选法又称筛法,是求不超过自然数N(N>1)的所有质数的一种方法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274~194年)发明的,又称埃拉托斯特尼筛子。   具体做法是:先把N个自然数按次序排列起来。1不是质数,也不是合数,要划去。第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。2后面 第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去。这 样一直做下去,就会把不超过N的全部合数都筛掉,留下的就是不超过N的全部质数。因为希腊人是把数写在涂腊的板上,每要划去一个数,就在上面记以小点,寻 求质数的工作完毕后,这许多小点就像一个筛子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼筛”,简称“筛法”。(另一种解释是当时的数写在纸草上,每 要划去一个数,就把这个数挖去,寻求质数的工作完毕后,这许多小洞就像一个筛子。)

    复制代码
    #include<stdio.h>
    #include
    <iostream>
    usingnamespace std;
    constint MAXN=500000;
    int f[MAXN+1];
    void vext()
    {
    int i,j;
    f[
    0]=f[1]=0;
    for(i=1;i<=MAXN/2;i++)
    for(j=i*2;j<=MAXN;j+=i)
    f[j]
    +=i;
    }
    int main()
    {
    int T;
    int n;
    cin
    >>T;
    vext();
    while(T--)
    {
    scanf(
    "%d",&n);
    printf(
    "%d ",f[n]);
    }
    return0
    ;
    }

    我现在还不明白为什么要这么做,希望大神赐教。



  • 相关阅读:
    JS
    Python之缩进块
    Python快捷键
    Python介绍
    SOAP UI-----测webservice接口
    jmeter分布式压测(多台电脑一起压测)
    jmeter操作数据库
    jmeter压测
    jmeter关联
    jmeter参数化
  • 原文地址:https://www.cnblogs.com/zhaoxinshanwei/p/3523215.html
Copyright © 2011-2022 走看看