zoukankan      html  css  js  c++  java
  • Android源代码解析之(七)-->LruCache缓存类

    转载请标明出处:一片枫叶的专栏

    android开发过程中常常会用到缓存。如今主流的app中图片等资源的缓存策略通常是分两级。一个是内存级别的缓存,一个是磁盘级别的缓存。

    作为android系统的维护者google也开源了其缓存方案,LruCache和DiskLruCache。从android3.1開始LruCache已经作为android源代码的一部分维护在android系统中。为了兼容曾经的版本号android的support-v4包也提供了LruCache的维护,假设App须要兼容到android3.1之前的版本号就须要使用support-v4包中的LruCache,假设不须要兼容到android3.1则直接使用android源代码中的LruCache就可以,这里须要注意的是DiskLruCache并非android源代码的一部分。

    在LruCache的源代码中。关于LruCache有这种一段介绍:

    A cache that holds strong references to a limited number of values. Each time a value is accessed, it is moved to the head of a queue. When a value is added to a full cache, the value at the end of that queue is evicted and may become eligible for garbage collection.

    cache对象通过一个强引用来訪问内容。每次当一个item被訪问到的时候,这个item就会被移动到一个队列的队首。当一个item被加入到已经满了的队列时,这个队列的队尾的item就会被移除。

    事实上这个实现的过程就是LruCache的缓存策略。即Lru–>(Least recent used)最少近期使用算法。

    以下我们详细看一下LruCache的实现:

    public class LruCache<K, V> {
        private final LinkedHashMap<K, V> map;
    
        /** Size of this cache in units. Not necessarily the number of elements. */
        private int size;
        private int maxSize;
    
        private int putCount;
        private int createCount;
        private int evictionCount;
        private int hitCount;
        private int missCount;
    
        /**
         * @param maxSize for caches that do not override {@link #sizeOf}, this is
         *     the maximum number of entries in the cache. For all other caches,
         *     this is the maximum sum of the sizes of the entries in this cache.
         */
        public LruCache(int maxSize) {
            if (maxSize <= 0) {
                throw new IllegalArgumentException("maxSize <= 0");
            }
            this.maxSize = maxSize;
            this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
        }
    
        /**
         * Sets the size of the cache.
         *
         * @param maxSize The new maximum size.
         */
        public void resize(int maxSize) {
            if (maxSize <= 0) {
                throw new IllegalArgumentException("maxSize <= 0");
            }
    
            synchronized (this) {
                this.maxSize = maxSize;
            }
            trimToSize(maxSize);
        }
    
        /**
         * Returns the value for {@code key} if it exists in the cache or can be
         * created by {@code #create}. If a value was returned, it is moved to the
         * head of the queue. This returns null if a value is not cached and cannot
         * be created.
         */
        public final V get(K key) {
            if (key == null) {
                throw new NullPointerException("key == null");
            }
    
            V mapValue;
            synchronized (this) {
                mapValue = map.get(key);
                if (mapValue != null) {
                    hitCount++;
                    return mapValue;
                }
                missCount++;
            }
    
            /*
             * Attempt to create a value. This may take a long time, and the map
             * may be different when create() returns. If a conflicting value was
             * added to the map while create() was working, we leave that value in
             * the map and release the created value.
             */
    
            V createdValue = create(key);
            if (createdValue == null) {
                return null;
            }
    
            synchronized (this) {
                createCount++;
                mapValue = map.put(key, createdValue);
    
                if (mapValue != null) {
                    // There was a conflict so undo that last put
                    map.put(key, mapValue);
                } else {
                    size += safeSizeOf(key, createdValue);
                }
            }
    
            if (mapValue != null) {
                entryRemoved(false, key, createdValue, mapValue);
                return mapValue;
            } else {
                trimToSize(maxSize);
                return createdValue;
            }
        }
    
        /**
         * Caches {@code value} for {@code key}. The value is moved to the head of
         * the queue.
         *
         * @return the previous value mapped by {@code key}.
         */
        public final V put(K key, V value) {
            if (key == null || value == null) {
                throw new NullPointerException("key == null || value == null");
            }
    
            V previous;
            synchronized (this) {
                putCount++;
                size += safeSizeOf(key, value);
                previous = map.put(key, value);
                if (previous != null) {
                    size -= safeSizeOf(key, previous);
                }
            }
    
            if (previous != null) {
                entryRemoved(false, key, previous, value);
            }
    
            trimToSize(maxSize);
            return previous;
        }
    
        /**
         * Remove the eldest entries until the total of remaining entries is at or
         * below the requested size.
         *
         * @param maxSize the maximum size of the cache before returning. May be -1
         *            to evict even 0-sized elements.
         */
        public void trimToSize(int maxSize) {
            while (true) {
                K key;
                V value;
                synchronized (this) {
                    if (size < 0 || (map.isEmpty() && size != 0)) {
                        throw new IllegalStateException(getClass().getName()
                                + ".sizeOf() is reporting inconsistent results!");
                    }
    
                    if (size <= maxSize) {
                        break;
                    }
    
                    Map.Entry<K, V> toEvict = map.eldest();
                    if (toEvict == null) {
                        break;
                    }
    
                    key = toEvict.getKey();
                    value = toEvict.getValue();
                    map.remove(key);
                    size -= safeSizeOf(key, value);
                    evictionCount++;
                }
    
                entryRemoved(true, key, value, null);
            }
        }
    
        /**
         * Removes the entry for {@code key} if it exists.
         *
         * @return the previous value mapped by {@code key}.
         */
        public final V remove(K key) {
            if (key == null) {
                throw new NullPointerException("key == null");
            }
    
            V previous;
            synchronized (this) {
                previous = map.remove(key);
                if (previous != null) {
                    size -= safeSizeOf(key, previous);
                }
            }
    
            if (previous != null) {
                entryRemoved(false, key, previous, null);
            }
    
            return previous;
        }
    
        /**
         * Called for entries that have been evicted or removed. This method is
         * invoked when a value is evicted to make space, removed by a call to
         * {@link #remove}, or replaced by a call to {@link #put}. The default
         * implementation does nothing.
         *
         * <p>The method is called without synchronization: other threads may
         * access the cache while this method is executing.
         *
         * @param evicted true if the entry is being removed to make space, false
         *     if the removal was caused by a {@link #put} or {@link #remove}.
         * @param newValue the new value for {@code key}, if it exists. If non-null,
         *     this removal was caused by a {@link #put}. Otherwise it was caused by
         *     an eviction or a {@link #remove}.
         */
        protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {}
    
        /**
         * Called after a cache miss to compute a value for the corresponding key.
         * Returns the computed value or null if no value can be computed. The
         * default implementation returns null.
         *
         * <p>The method is called without synchronization: other threads may
         * access the cache while this method is executing.
         *
         * <p>If a value for {@code key} exists in the cache when this method
         * returns, the created value will be released with {@link #entryRemoved}
         * and discarded. This can occur when multiple threads request the same key
         * at the same time (causing multiple values to be created), or when one
         * thread calls {@link #put} while another is creating a value for the same
         * key.
         */
        protected V create(K key) {
            return null;
        }
    
        private int safeSizeOf(K key, V value) {
            int result = sizeOf(key, value);
            if (result < 0) {
                throw new IllegalStateException("Negative size: " + key + "=" + value);
            }
            return result;
        }
    
        /**
         * Returns the size of the entry for {@code key} and {@code value} in
         * user-defined units.  The default implementation returns 1 so that size
         * is the number of entries and max size is the maximum number of entries.
         *
         * <p>An entry's size must not change while it is in the cache.
         */
        protected int sizeOf(K key, V value) {
            return 1;
        }
    
        /**
         * Clear the cache, calling {@link #entryRemoved} on each removed entry.
         */
        public final void evictAll() {
            trimToSize(-1); // -1 will evict 0-sized elements
        }
    
        /**
         * For caches that do not override {@link #sizeOf}, this returns the number
         * of entries in the cache. For all other caches, this returns the sum of
         * the sizes of the entries in this cache.
         */
        public synchronized final int size() {
            return size;
        }
    
        /**
         * For caches that do not override {@link #sizeOf}, this returns the maximum
         * number of entries in the cache. For all other caches, this returns the
         * maximum sum of the sizes of the entries in this cache.
         */
        public synchronized final int maxSize() {
            return maxSize;
        }
    
        /**
         * Returns the number of times {@link #get} returned a value that was
         * already present in the cache.
         */
        public synchronized final int hitCount() {
            return hitCount;
        }
    
        /**
         * Returns the number of times {@link #get} returned null or required a new
         * value to be created.
         */
        public synchronized final int missCount() {
            return missCount;
        }
    
        /**
         * Returns the number of times {@link #create(Object)} returned a value.
         */
        public synchronized final int createCount() {
            return createCount;
        }
    
        /**
         * Returns the number of times {@link #put} was called.
         */
        public synchronized final int putCount() {
            return putCount;
        }
    
        /**
         * Returns the number of values that have been evicted.
         */
        public synchronized final int evictionCount() {
            return evictionCount;
        }
    
        /**
         * Returns a copy of the current contents of the cache, ordered from least
         * recently accessed to most recently accessed.
         */
        public synchronized final Map<K, V> snapshot() {
            return new LinkedHashMap<K, V>(map);
        }
    
        @Override public synchronized final String toString() {
            int accesses = hitCount + missCount;
            int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0;
            return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]",
                    maxSize, hitCount, missCount, hitPercent);
        }
    }

    能够看到LruCache初始化的时候须要使用泛型,一般的我们这样初始化LruCache对象:

    // 获取应用程序最大可用内存  
            int maxMemory = (int) Runtime.getRuntime().maxMemory();  
            int cacheSize = maxMemory / 8;  
            // 设置图片缓存大小为程序最大可用内存的1/8  
            mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {  
                @Override  
                protected int sizeOf(String key, Bitmap bitmap) {  
                    return bitmap.getByteCount();  
                }  
            };  

    这里我们假设通过String作为key保存bitmap对象,同一时候须要传递一个int型的maxSize数值。主要用于设置LruCache链表的最大值。

    查看其构造方法:

    // 获取应用程序最大可用内存  
            int maxMemory = (int) Runtime.getRuntime().maxMemory();  
            int cacheSize = maxMemory / 8;  
            // 设置图片缓存大小为程序最大可用内存的1/8  
            mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {  
                @Override  
                protected int sizeOf(String key, Bitmap bitmap) {  
                    return bitmap.getByteCount();  
                }  
            };  

    能够看到其基本的是初始化了maxSize和map链表对象。

    然后查看put方法:

    public final V put(K key, V value) {
            if (key == null || value == null) {
                throw new NullPointerException("key == null || value == null");
            }
    
            V previous;
            synchronized (this) {
                putCount++;
                size += safeSizeOf(key, value);
                previous = map.put(key, value);
                if (previous != null) {
                    size -= safeSizeOf(key, previous);
                }
            }
    
            if (previous != null) {
                entryRemoved(false, key, previous, value);
            }
    
            trimToSize(maxSize);
            return previous;
        }

    须要传递两个參数:K和V,首先做了一下參数的推断,然后定义一个保存前一个Value值得暂时变量。让putCount(put运行的次数)自增,让map的size大小自增。


    须要注意的是这里的

    previous = map.put(key, value);

    我们看一下这里的map.put()的详细实现:

    @Override public V put(K key, V value) {
            if (key == null) {
                return putValueForNullKey(value);
            }
    
            int hash = Collections.secondaryHash(key);
            HashMapEntry<K, V>[] tab = table;
            int index = hash & (tab.length - 1);
            for (HashMapEntry<K, V> e = tab[index]; e != null; e = e.next) {
                if (e.hash == hash && key.equals(e.key)) {
                    preModify(e);
                    V oldValue = e.value;
                    e.value = value;
                    return oldValue;
                }
            }
    
            // No entry for (non-null) key is present; create one
            modCount++;
            if (size++ > threshold) {
                tab = doubleCapacity();
                index = hash & (tab.length - 1);
            }
            addNewEntry(key, value, hash, index);
            return null;
        }

    将Key与Value的值压入Map中,这里推断了一下假设map中已经存在该key,value键值对,则不再压入map,并将Value值返回,否则将该键值对压入Map中。并返回null;

    返回继续put方法:

    previous = map.put(key, value);
                if (previous != null) {
                    size -= safeSizeOf(key, previous);
                }

    能够看到这里我们推断map.put方法的返回值是否为空。假设不为空的话,则说明我们刚刚并没有将我么你的键值对压入Map中,所以这里的size须要自减;

    然后以下:

    if (previous != null) {
                entryRemoved(false, key, previous, value);
            }

    这里推断previous是否为空,假设不为空的话,调用了一个空的实现方法entryRemoved(),也就是说我们能够实现自己的LruCache并在加入缓存的时候若存在该缓存能够重写这种方法;

    以下调用了trimToSize(maxSize)方法:

    public void trimToSize(int maxSize) {
            while (true) {
                K key;
                V value;
                synchronized (this) {
                    if (size < 0 || (map.isEmpty() && size != 0)) {
                        throw new IllegalStateException(getClass().getName()
                                + ".sizeOf() is reporting inconsistent results!");
                    }
    
                    if (size <= maxSize) {
                        break;
                    }
    
                    Map.Entry<K, V> toEvict = map.eldest();
                    if (toEvict == null) {
                        break;
                    }
    
                    key = toEvict.getKey();
                    value = toEvict.getValue();
                    map.remove(key);
                    size -= safeSizeOf(key, value);
                    evictionCount++;
                }
    
                entryRemoved(true, key, value, null);
            }
        }

    该方法主要是推断该Map的大小是否已经达到阙值,若达到,则将Map队尾的元素(最不常使用的元素)remove掉。

    总结:
    LruCache put方法,将键值对压入Map数据结构中。若这是Map的大小已经大于LruCache中定义的最大值,则将Map中最早压入的元素remove掉;

    查看get方法:

    public final V get(K key) {
            if (key == null) {
                throw new NullPointerException("key == null");
            }
    
            V mapValue;
            synchronized (this) {
                mapValue = map.get(key);
                if (mapValue != null) {
                    hitCount++;
                    return mapValue;
                }
                missCount++;
            }
    
            /*
             * Attempt to create a value. This may take a long time, and the map
             * may be different when create() returns. If a conflicting value was
             * added to the map while create() was working, we leave that value in
             * the map and release the created value.
             */
    
            V createdValue = create(key);
            if (createdValue == null) {
                return null;
            }
    
            synchronized (this) {
                createCount++;
                mapValue = map.put(key, createdValue);
    
                if (mapValue != null) {
                    // There was a conflict so undo that last put
                    map.put(key, mapValue);
                } else {
                    size += safeSizeOf(key, createdValue);
                }
            }
    
            if (mapValue != null) {
                entryRemoved(false, key, createdValue, mapValue);
                return mapValue;
            } else {
                trimToSize(maxSize);
                return createdValue;
            }
        }

    能够看到參数值为Key。简单的理解就是通过key值从map中取出Value值。
    详细来说,推断map中是否含有key值value值。若存在。则hitCount(击中元素数量)自增,并返回Value值。若没有击中,则运行create(key)方法,这里看到create方法是一个空的实现方法,返回值为null。所以我们能够重写该方法,在调用get(key)的时候若没有找到value值,则自己主动创建一个value值并压入map中。

    总结:

    • LruCache,内部使用Map保存内存级别的缓存

    • LruCache使用泛型能够设配各种类型

    • LruCache使用了Lru算法保存数据(最短最少使用least recent use)

    • LruCache仅仅用使用put和get方法压入数据和取出数据

    另外对android源代码解析方法感兴趣的可參考我的:
    android源代码解析之(一)–>android项目构建过程
    android源代码解析之(二)–>异步消息机制
    android源代码解析之(三)–>异步任务AsyncTask
    android源代码解析之(四)–>HandlerThread
    android源代码解析之(五)–>IntentService
    android源代码解析之(六)–>Log


    本文以同步至github中:https://github.com/yipianfengye/androidSource。欢迎star和follow


  • 相关阅读:
    POJ 1753(1)
    2015.12 杭电校赛 Bitwise Equations
    codeforces B
    POJ2387 水水最短路
    CodeForces 337C SDUT秋季训练--周赛(10.31)
    HDU 1241
    POJ 3126 Prime Path
    HDU 2612
    POJ 1426 Find The Multiple
    day94 flask-session 表单验证 信号 SQLALchemy
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/8454198.html
Copyright © 2011-2022 走看看