zoukankan      html  css  js  c++  java
  • Codeforces Round #266 (Div. 2) C. Number of Ways

    You've got array a[1], a[2], ..., a[n], consisting of n integers. Count the number of ways to split all the elements of the array into three contiguous parts so that the sum of elements in each part is the same.

    More formally, you need to find the number of such pairs of indices i, j (2 ≤ i ≤ j ≤ n - 1), that .

    Input

    The first line contains integer n (1 ≤ n ≤ 5·105), showing how many numbers are in the array. The second line contains n integers a[1], a[2], ..., a[n] (|a[i]| ≤  109) — the elements of array a.

    Output

    Print a single integer — the number of ways to split the array into three parts with the same sum.

    Sample test(s)
    Input
    5
    1 2 3 0 3
    
    Output
    2
    
    Input
    4
    0 1 -1 0
    
    Output
    1
    
    Input
    2
    4 1
    
    Output
    0


    思路:若平分分成若干种情况。应当总体(SUM)考虑,对SUM/3进行分析。它是区分3段的标准。

    所以当部分和tmp==SUM/3,部分统计加一。

    当tmp==sUM*2/3。则所有统计ans+=部分统计(s);


    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<cmath>
    #include<algorithm>
    #define LL  __int64
    #define inf 0x3f3f3f3f
    using namespace std;
    LL a[1000000];
    int main()
    {
        LL n,m,i,j,k;
        LL b,t;
        while(~scanf("%I64d",&n))
        {
            LL z=0;
            for(i=0;i<n;i++)
            {
                scanf("%I64d",&a[i]);
                z+=a[i];
            }
            if(z%3)
            {
                printf("0
    ");
                continue;
            }
            z/=3;
            LL ans=0;LL s=0;LL tmp=0;
            for(i=0;i<n-1;i++)//注意舍去最后以为数<span id="transmark"></span>
            {
                tmp+=a[i];
                if(z*2==tmp)
                {
                    ans+=s;
                }
                if(z==tmp)
                {
                    s++;
                }
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    


  • 相关阅读:
    Python之pexpect详解
    Python之NMAP详解
    Python之正则表达式
    Python之面向对象-反射
    Python之元类详解
    Python之Django基本命令
    Python之Django的Model详解
    使用request+Beautiful爬取妹子图
    Django中settings设计模式(单例模式)
    六、Django之表单和类视图-Part 4
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/8617780.html
Copyright © 2011-2022 走看看