zoukankan      html  css  js  c++  java
  • [LeetCode] 139. Word Break(分割单词)

    Description

    Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
    给定一个非空字符串和一个包含非空单词的字典,判断这个字符串是否能够分割为字典中的单词(该字符串能否通过字典中的单词构成)。

    Note

    • The same word in the dictionary may be reused multiple times in the segmentation.
      字典里的词可以重复使用
    • You may assume the dictionary does not contain duplicate words.
      你可以假定字典内没有重复的词

    Examples

    Example 1

    Input: s = "leetcode", wordDict = ["leet", "code"]
    Output: true
    Explanation: Return true because "leetcode" can be segmented as "leet code".
    

    Example 2

    Input: s = "applepenapple", wordDict = ["apple", "pen"]
    Output: true
    Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
                 Note that you are allowed to reuse a dictionary word.
    

    Example 3

    Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
    Output: false
    

    Solution

    这题的动态规划解法虽然能把时间复杂度降下来,但实际运行时间并不是很理想。

    dp[i] 表示 s[0, i) 子串是否满足条件,问题转换为求解 dp[s.length]

    明显地,dp[0] 应该是 true(我不用字典里的单词,造一个空串,当然可以咯)

    那么 dp[i] 要怎么确定,这就和字典中的单词有关了。记字典中的单词为 word,那么 dp[i]true 当且仅当:

    • s[i - word.length, i) 子串为 word

    • dp[i - word.length]true

    这就是本题的状态转移方程,代码如下:

    class Solution {
        fun wordBreak(s: String, wordDict: List<String>): Boolean {
            val wordSet = wordDict.toSet()
            val dp = BooleanArray(s.length + 1)
            dp[0] = true
    
            for (i in 1..s.length) {
                for (j in 0 until i) {
                    if (dp[j] && s.substring(j, i) in wordSet) {
                        dp[i] = true
                        break
                    }
                }
            }
    
            return dp.last()
        }
    }
    
  • 相关阅读:
    NOIP1996 第三题
    vijos P1071
    USACO 2.3
    NOIP2006 第二题(change)
    NOIP2006 第二题
    NOIP2005 第三题
    Building Block 动态规划
    砝码问题 Weight
    装箱问题(Packing DP)
    算法第二章上机实践报告
  • 原文地址:https://www.cnblogs.com/zhongju/p/14060432.html
Copyright © 2011-2022 走看看