-
Difficulty: Medium
-
Related Topics: Dynamic Programming
Description
Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
给定一个非空字符串和一个包含非空单词的字典,判断这个字符串是否能够分割为字典中的单词(该字符串能否通过字典中的单词构成)。
Note
- The same word in the dictionary may be reused multiple times in the segmentation.
字典里的词可以重复使用 - You may assume the dictionary does not contain duplicate words.
你可以假定字典内没有重复的词
Examples
Example 1
Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2
Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3
Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false
Solution
这题的动态规划解法虽然能把时间复杂度降下来,但实际运行时间并不是很理想。
记 dp[i]
表示 s
的 [0, i)
子串是否满足条件,问题转换为求解 dp[s.length]
。
明显地,dp[0]
应该是 true
(我不用字典里的单词,造一个空串,当然可以咯)
那么 dp[i]
要怎么确定,这就和字典中的单词有关了。记字典中的单词为 word
,那么 dp[i]
为 true
当且仅当:
-
s
的[i - word.length, i)
子串为word
-
dp[i - word.length]
为true
这就是本题的状态转移方程,代码如下:
class Solution {
fun wordBreak(s: String, wordDict: List<String>): Boolean {
val wordSet = wordDict.toSet()
val dp = BooleanArray(s.length + 1)
dp[0] = true
for (i in 1..s.length) {
for (j in 0 until i) {
if (dp[j] && s.substring(j, i) in wordSet) {
dp[i] = true
break
}
}
}
return dp.last()
}
}