zoukankan      html  css  js  c++  java
  • 5分钟了解图数据库Neo4j的使用

    1.图数据库安装与配置

    1.1安装与配置

    配置path = %NEO4J_HOME%in
     
    启动命令:neo4j console
     

    1.2权限管理

    :server change-password 修改密码
     
    :server user list 可视化界面管理用户权限
     
    :server disconnect 退出当前用户

    2.从csv导入数据

    (1)停掉服务
     
    (2)删除 graph.db 目录
     
    (3)报错,解决办法:将bin/neo4j-import.ps1文件的相对路径改为绝对路径
     
    (4)准备CSV文件。举例如下,记录为电影,明星 以及其中存在的一个扮演角色关系。CSV格式为:
     
    movies.csv
    movieId:ID,title,year:int,:LABEL
    tt0133093,"The Matrix",1999,Movie
    tt0234215,"The Matrix Reloaded",2003,Movie;Sequel
    tt0242653,"The Matrix Revolutions",2003,Movie;Sequel
     
    actors.csv
    personId:ID,name,:LABEL
    keanu,"Keanu Reeves",Actor
    laurence,"Laurence Fishburne",Actor
    carrieanne,"Carrie-Anne Moss",Actor
     
    roles.csv
    :START_ID,role,:END_ID,:TYPE
    keanu,"Neo",tt0133093,ACTED_IN
    keanu,"Neo",tt0234215,ACTED_IN
    keanu,"Neo",tt0242653,ACTED_IN
    laurence,"Morpheus",tt0133093,ACTED_IN
    laurence,"Morpheus",tt0234215,ACTED_IN
    laurence,"Morpheus",tt0242653,ACTED_IN
    carrieanne,"Trinity",tt0133093,ACTED_IN
    carrieanne,"Trinity",tt0234215,ACTED_IN
    carrieanne,"Trinity",tt0242653,ACTED_IN
     
    (5) 导入命令:neo4j-import --into graph.db --nodes <节点1.csv> --nodes <节点2.csv> --relationships <关系.csv>
     

    3.常见的CQL命令

    以Movie、Actors、Roles 为例,图形如下:
     
     

    3.1查询

    • 查询整个图形
    match(n) return n
     
    • 查询year小于2000的电影
    match (n)
    where n.year < 2000
    return n
     
    • 查询带有movie标签的节点
    match(n:Movie)
    return n
     
    • 查询名字叫Keanu Reeves的演员
    match (n{name:'Keanu Reeves'})
    return n
     
    • 查询与带Movie标签的节点相关的所有节点
    match(n) -- (m:Movie)
    return n
     
    • 查询“Keanu Reeves”所有参演过的电影
    match (n) -[r:ACTED_IN]-> (m:Movie)
    where n.name = 'Keanu Reeves'
    return m
     
    match (n{name:'Keanu Reeves'}) -[r:ACTED_IN]-> (m:Movie)
    return m
     
    • 查询与“Keanu Reeves”同演过的人
    match (a) -[:ACTED_IN]->(m)<-[:ACTED_IN]- (b)
    return distinct b
     

    3.2.创建

    • 增加拍摄于2010年名叫“super man”的电影
    create (n:Movie{title:'super man',year:2010})
    return n
     
    • 增加名叫“Jone”的演员
    create (n:Actor{name:'Jone'})
    return n
     
    • 增加“Jone”和“super man”之间类型为ACTED_IN的关系
    match (a{name:'Jone'}),(b{name:'super man'})
    create (a) -[r:ACTED_IN]->(b)
    return r

    3.3更新

    • 给“Jone”增加属性age = 40
    match(n{name:'Jone'})
    set n.age = 40
    return n
     
    • 给“super man”增加description = “Hot”
    match(n{name:'super man'})
    set n.description = 'Hot'
    return n
     
    • 给“Jone”和“super man”之间的关系增加description=“first”
    match (a{name:'Jone'})-[r]->(b{name:'super man'})
    set r.description = 'first'
    return r

    3.4删除

    • 删除id不同,名字相同的重复的演员实体
    match (a:Actor),(b:Actor)
    where id(a) <> id(b) and a.name = b.name
    delete b
    return b

    3.5函数

    • 查询name=“Jone”的节点的ID
    match (n{name:'Jone'})
    return id(n)
     
    • 查询“Jone”和“super man”之间关系类型
    match (a{name:'Jone'})-[r]->(b{name:'super man'})
    return type(r)
     
    • 查询name=“Jone”的节点的所有属性名
    match (n{name:'Jone'})
    return keys(n)
     
    • 查询name=“Jone”的节点的所有属性名及值
    match (n{name:'Jone'})
    return properties(n)
     
    • 统计带标签“Movie”的节点数量
    match (n:Movie)
    with count(*) as f
    return f
     
    • 给所有节点增加时间戳
    match (n)
    set n.timestamp = timestamp()
     

    3.6路径

    • 查询与“Keanu Reeves”距离1-3度的节点
    match (n{name:'Keanu Reeves'}) -[*1..3]- (m)
    return m
     
    • 查询“Laurence Fishburne”和“Keanu Reeves”的最短路径
    match p = shortestPath ((a{name:'Laurence Fishburne'})-[*]-(b{name:'Keanu Reeves'}))
    return p

    4.Python实现neo4j的访问

    from py2neo import Database, Graph, Node, Relationship
    
    # 建立连接
    db = Database("http://127.0.0.1:7474")
    graph = Graph("bolt://127.0.0.1:7687", username="neo4j", password="123456")
    
    try:
        for node in graph.nodes:
            print(node)
    except:
        print("key error!")
        
    # 匹配
    n = graph.nodes.match("Keanu Reeves")
    for i in n:
        print(i)
    try:
        for r in graph.relationships:
            print(r)
    except:
        print("key error!")
        
    # 提交任务
    tx = graph.begin()
    a = Node("Actor", name="张鹤伦")
    tx.create(a)
    b = Node("Actor", name="杨九郎")
    ab = Relationship(a, "师兄弟", b)
    tx.create(ab)
    tx.commit()
    
    # 判断是否存在
    isExists = graph.exists(ab)
    print("is Exists=" + str(isExists))
    
    # 执行CQL命令
    graph.run('create(p:Actor{name:"周九良"})')
    ans = graph.run('match(p:Actor) return p.name,p.born').to_ndarray()
    print(ans)
    参考资料:
     
     
     
     
  • 相关阅读:
    JavaScript相关,this 的指向
    酷炫的渲染,CSS3动画!
    正襟危坐,聊一聊Web语义化
    本地存储的技术,localStorage、sessionStorage、cookie、session
    Express 系列(终章):MongoDB使数据持久化
    股票投资相关,成交量怎么看
    【日本語新聞選読】第5回:3月31日
    【1901日語听解2】第5回:3月30日
    【日語視聴説2】第5回:3月30日
    【日本語新聞編集】第4回:3月27日
  • 原文地址:https://www.cnblogs.com/zhongzihao/p/11327774.html
Copyright © 2011-2022 走看看