Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
解题思路:解题思路:输入一串整数,记一个最大和summax,使其不断与前i个数的和比较若sum[i]>summax并记录开始与结束的位置,则使summax=sum[i];若sum[i]<0,则sum[i]=0并记录此时的位置为起始位置;此后不断循环最终得到所求结果。注意起始位置的记录。
经典的动态规划题目,
#include <iostream> using namespace std; int main(){ int a[100002]; int t,c; cin >> t; for (int i=0; i<t; i++) { cin >> c; int summax=-1000; int sum=0,st=0,end=0,k=1; for (int i=0; i<c; i++) { cin >> a[i]; } for (int i=0; i<c; i++) { sum+=a[i]; if (summax<sum) { summax=sum; st=k; end=i+1; } if (sum<0) { sum=0; k=i+2; } } cout << "Case " << i+1 <<endl <<summax << " " << st << " " << end << endl; if ((i+1)!=t) { cout << endl; } } return 0; }