zoukankan      html  css  js  c++  java
  • FM算法keras实现

    
    import numpy as np
    import pandas as pd
    import tensorflow as tf
    import keras
    import os
    
    import matplotlib.pyplot as plt
    
    from keras.layers import Layer,Dense,Dropout,Input
    from keras import Model,activations
    from keras.optimizers import Adam
    from keras import backend as K
    from keras.layers import Layer
    from sklearn.datasets import load_breast_cancer
    
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ['CUDA_VISIBLE_DEVICES'] = "0"
    class FM(Layer):
        def __init__(self, output_dim, latent=10,  activation='relu', **kwargs):
            self.latent = latent
            self.output_dim = output_dim
            self.activation = activations.get(activation)
            super(FM, self).__init__(**kwargs)
    
        def build(self, input_shape):
            self.b = self.add_weight(name='W0',
                                      shape=(self.output_dim,),
                                      trainable=True,
                                     initializer='zeros')
            self.w = self.add_weight(name='W',
                                     shape=(input_shape[1], self.output_dim),
                                     trainable=True,
                                     initializer='random_uniform')
            self.v= self.add_weight(name='V',
                                     shape=(input_shape[1], self.latent),
                                     trainable=True,
                                    initializer='random_uniform')
            super(FM, self).build(input_shape)
    
        def call(self, inputs, **kwargs):
            x = inputs
            x_square = K.square(x)
    
            xv = K.square(K.dot(x, self.v))
            xw = K.dot(x, self.w)
    
            p = 0.5*K.sum(xv-K.dot(x_square, K.square(self.v)), 1)
    
            rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)
    
            f = xw + rp + self.b
    
            output = K.reshape(f, (-1, self.output_dim))
    
            return output
    
        def compute_output_shape(self, input_shape):
            assert input_shape and len(input_shape)==2
            return input_shape[0],self.output_dim
    
    
    data = load_breast_cancer()["data"]
    target = load_breast_cancer()["target"]
    
    K.clear_session()
    print(target)
    inputs = Input(shape=(30,))
    out = FM(20)(inputs)
    out = Dense(15, activation='sigmoid')(out)
    out = Dense(1, activation='sigmoid')(out)
    
    model=Model(inputs=inputs, outputs=out)
    model.compile(loss='mse',
                  optimizer='adam',
                  metrics=['acc'])
    model.summary()
    
    h=model.fit(data, target, batch_size=1, epochs=10, validation_split=0.2)
    
    #%%
    
    plt.plot(h.history['acc'],label='acc')
    plt.plot(h.history['val_acc'],label='val_acc')
    plt.xlabel('epoch')
    plt.ylabel('acc')
    
    #%%
    
  • 相关阅读:
    hdu5914 Triangle 【贪心】
    2016中国大学生程序设计竞赛(ccpc 长春) Fraction【模拟】
    hdu 4034 【floyed变形】
    A
    hdu 2553 N皇后问题【dfs】
    【算法入门经典】7.4回溯法【八皇后问题】
    用javascript实现控制一个文本框的输入字数限制,超出字数限制文本框飘红显示-面试题
    Firebug控制台详解
    CSS实现兼容性的渐变背景(gradient)效果
    jQuery学习——入门jQuery选择器之层次选择器
  • 原文地址:https://www.cnblogs.com/zhouyu0-0/p/12293880.html
Copyright © 2011-2022 走看看