zoukankan      html  css  js  c++  java
  • FM算法keras实现

    
    import numpy as np
    import pandas as pd
    import tensorflow as tf
    import keras
    import os
    
    import matplotlib.pyplot as plt
    
    from keras.layers import Layer,Dense,Dropout,Input
    from keras import Model,activations
    from keras.optimizers import Adam
    from keras import backend as K
    from keras.layers import Layer
    from sklearn.datasets import load_breast_cancer
    
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ['CUDA_VISIBLE_DEVICES'] = "0"
    class FM(Layer):
        def __init__(self, output_dim, latent=10,  activation='relu', **kwargs):
            self.latent = latent
            self.output_dim = output_dim
            self.activation = activations.get(activation)
            super(FM, self).__init__(**kwargs)
    
        def build(self, input_shape):
            self.b = self.add_weight(name='W0',
                                      shape=(self.output_dim,),
                                      trainable=True,
                                     initializer='zeros')
            self.w = self.add_weight(name='W',
                                     shape=(input_shape[1], self.output_dim),
                                     trainable=True,
                                     initializer='random_uniform')
            self.v= self.add_weight(name='V',
                                     shape=(input_shape[1], self.latent),
                                     trainable=True,
                                    initializer='random_uniform')
            super(FM, self).build(input_shape)
    
        def call(self, inputs, **kwargs):
            x = inputs
            x_square = K.square(x)
    
            xv = K.square(K.dot(x, self.v))
            xw = K.dot(x, self.w)
    
            p = 0.5*K.sum(xv-K.dot(x_square, K.square(self.v)), 1)
    
            rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)
    
            f = xw + rp + self.b
    
            output = K.reshape(f, (-1, self.output_dim))
    
            return output
    
        def compute_output_shape(self, input_shape):
            assert input_shape and len(input_shape)==2
            return input_shape[0],self.output_dim
    
    
    data = load_breast_cancer()["data"]
    target = load_breast_cancer()["target"]
    
    K.clear_session()
    print(target)
    inputs = Input(shape=(30,))
    out = FM(20)(inputs)
    out = Dense(15, activation='sigmoid')(out)
    out = Dense(1, activation='sigmoid')(out)
    
    model=Model(inputs=inputs, outputs=out)
    model.compile(loss='mse',
                  optimizer='adam',
                  metrics=['acc'])
    model.summary()
    
    h=model.fit(data, target, batch_size=1, epochs=10, validation_split=0.2)
    
    #%%
    
    plt.plot(h.history['acc'],label='acc')
    plt.plot(h.history['val_acc'],label='val_acc')
    plt.xlabel('epoch')
    plt.ylabel('acc')
    
    #%%
    
  • 相关阅读:
    博客测试页
    题解 P1420 【最长连号】
    计蒜客T1846AC记
    折腾笔记-计蒜客T1167AC记
    sublimetext使用教程
    北冥'sfish
    折腾笔记-计蒜客T1158-和为给定数AC记
    折腾笔记-计蒜客t1156AC记
    [题解]-整理药名
    python字符串连接的三种方法及其效率、适用场景详解
  • 原文地址:https://www.cnblogs.com/zhouyu0-0/p/12293880.html
Copyright © 2011-2022 走看看