import numpy as np
import pandas as pd
import tensorflow as tf
import keras
import os
import matplotlib.pyplot as plt
from keras.layers import Layer,Dense,Dropout,Input
from keras import Model,activations
from keras.optimizers import Adam
from keras import backend as K
from keras.layers import Layer
from sklearn.datasets import load_breast_cancer
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
class FM(Layer):
def __init__(self, output_dim, latent=10, activation='relu', **kwargs):
self.latent = latent
self.output_dim = output_dim
self.activation = activations.get(activation)
super(FM, self).__init__(**kwargs)
def build(self, input_shape):
self.b = self.add_weight(name='W0',
shape=(self.output_dim,),
trainable=True,
initializer='zeros')
self.w = self.add_weight(name='W',
shape=(input_shape[1], self.output_dim),
trainable=True,
initializer='random_uniform')
self.v= self.add_weight(name='V',
shape=(input_shape[1], self.latent),
trainable=True,
initializer='random_uniform')
super(FM, self).build(input_shape)
def call(self, inputs, **kwargs):
x = inputs
x_square = K.square(x)
xv = K.square(K.dot(x, self.v))
xw = K.dot(x, self.w)
p = 0.5*K.sum(xv-K.dot(x_square, K.square(self.v)), 1)
rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)
f = xw + rp + self.b
output = K.reshape(f, (-1, self.output_dim))
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape)==2
return input_shape[0],self.output_dim
data = load_breast_cancer()["data"]
target = load_breast_cancer()["target"]
K.clear_session()
print(target)
inputs = Input(shape=(30,))
out = FM(20)(inputs)
out = Dense(15, activation='sigmoid')(out)
out = Dense(1, activation='sigmoid')(out)
model=Model(inputs=inputs, outputs=out)
model.compile(loss='mse',
optimizer='adam',
metrics=['acc'])
model.summary()
h=model.fit(data, target, batch_size=1, epochs=10, validation_split=0.2)
#%%
plt.plot(h.history['acc'],label='acc')
plt.plot(h.history['val_acc'],label='val_acc')
plt.xlabel('epoch')
plt.ylabel('acc')
#%%