题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3720
题意:在一个矩形区域投掷飞镖,每个整点有磁性,每个点的磁性是一样的,因此飞镖只会落在整点上,投到每个点的得分是:Ax+By。矩形区域里面有个多边形,如果飞镖投在多边形里面则得分,求最终的得分期望。
对于每个点,以它为中心的边长为1的正方形范围内,它都可以把飞镖吸引过来,则最后飞镖能得分的面积就是多边形内以及多边形上所有整点的正方形的面积并,然后期望公式E(X)=p*xi。。
1 //STATUS:C++_AC_900MS_188KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //using namespace __gnu_cxx; 25 //define 26 #define pii pair<int,int> 27 #define mem(a,b) memset(a,b,sizeof(a)) 28 #define lson l,mid,rt<<1 29 #define rson mid+1,r,rt<<1|1 30 #define PI acos(-1.0) 31 //typedef 32 //typedef __int64 LL; 33 //typedef unsigned __int64 ULL; 34 //const 35 const int N=35; 36 const int INF=0x3f3f3f3f; 37 const int MOD=100000,STA=8000010; 38 //const LL LNF=1LL<<60; 39 const double EPS=1e-8; 40 const double OO=1e15; 41 const int dx[4]={-1,0,1,0}; 42 const int dy[4]={0,1,0,-1}; 43 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 44 //Daily Use ... 45 inline int sign(double x){return (x>EPS)-(x<-EPS);} 46 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 47 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 48 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 49 template<class T> inline T Min(T a,T b){return a<b?a:b;} 50 template<class T> inline T Max(T a,T b){return a>b?a:b;} 51 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 52 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 53 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 54 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 55 //End 56 57 struct Node{ 58 double x,y; 59 }nod[N]; 60 61 struct DNode{ 62 double x,y; 63 }ju[2]; 64 65 double A,B; 66 int n; 67 68 int chaji(Node &a,Node &b){ 69 return a.x*b.y-b.x*a.y; 70 } 71 72 int ponls(Node &a,Node &b,Node &p) 73 { 74 if( (p.x==a.x && p.y==a.y) || (p.x==b.x && p.y==b.y) )return 2; 75 Node r1,r2; 76 r1.x=a.x-b.x,r1.y=a.y-b.y; 77 r2.x=p.x-b.x,r2.y=p.y-b.y; 78 if(!chaji(r1,r2) && p.x>=min(a.x,b.x) && p.x<=max(a.x,b.x) 79 && p.y>=min(a.y,b.y) && p.y<=max(a.y,b.y)) 80 return 1; 81 return 0; 82 } 83 84 int quick(Node &l1,Node &l2,Node &r1,Node &r2) 85 { 86 87 if(min(l1.x,l2.x)>max(r1.x,r2.x) 88 || min(l1.y,l2.y)>max(r1.y,r2.y) 89 || max(l1.x,l2.x)<min(r1.x,r2.x) 90 || max(l1.y,l2.y)<min(r1.y,r2.y)) 91 return 0; 92 return 1; 93 } 94 95 int las(Node &l1,Node &l2,Node &r1,Node &r2) 96 { 97 Node a,b,c; 98 a.x=l1.x-r1.x; 99 a.y=l1.y-r1.y; 100 b.x=r2.x-r1.x; 101 b.y=r2.y-r1.y; 102 c.x=l2.x-r1.x; 103 c.y=l2.y-r1.y; 104 if( ((a.x*b.y)-(b.x*a.y))*((c.x*b.y)-(b.x*c.y))<0)return 1; 105 else return 0; 106 } 107 108 int pinply(int num_node,Node nod[],Node &p) 109 { 110 int i,j,cou=0; 111 Node ray; 112 ray.x=-1,ray.y=p.y; 113 for(i=0;i<num_node;i++){ 114 j=(i+1)%num_node; 115 if(ponls(nod[i],nod[j],p))return 0; 116 if(nod[i].y!=nod[j].y){ 117 if(ponls(p,ray,nod[i]) && nod[i].y==max(nod[i].y,nod[j].y)) 118 cou++; 119 else if(ponls(p,ray,nod[j]) && nod[j].y==max(nod[i].y,nod[j].y)) 120 cou++; 121 else if(quick(nod[i],nod[j],p,ray) && las(nod[i],nod[j],p,ray) 122 && las(p,ray,nod[i],nod[j])) 123 cou++; 124 } 125 } 126 return cou&1; 127 } 128 129 bool isonline(int n,Node nod[],Node &p) 130 { 131 int i,j; 132 for(i=0;i<n;i++){ 133 if( (p.y-nod[i].y)*(nod[i+1].x-nod[i].x)==(nod[i+1].y-nod[i].y)*(p.x-nod[i].x) 134 && p.x>=Min(nod[i].x,nod[i+1].x) && p.x<=Max(nod[i].x,nod[i+1].x) 135 && p.y>=Min(nod[i].y,nod[i+1].y) && p.y<=Max(nod[i].y,nod[i+1].y) )return true; 136 } 137 if( (p.y-nod[n].y)*(nod[0].x-nod[n].x)==(nod[0].y-nod[n].y)*(p.x-nod[n].x) 138 && p.x>=Min(nod[n].x,nod[0].x) && p.x<=Max(nod[n].x,nod[0].x) 139 && p.y>=Min(nod[n].y,nod[0].y) && p.y<=Max(nod[n].y,nod[0].y) )return true; 140 return false; 141 } 142 143 double gets(Node &t) 144 { 145 double w,h; 146 w=Min(t.x+0.5,ju[1].x)-Max(t.x-0.5,ju[0].x); 147 h=Min(t.y+0.5,ju[1].y)-Max(t.y-0.5,ju[0].y); 148 // printf(" %lf %lf ",w,h); 149 return h*w; 150 } 151 152 int main() 153 { 154 // freopen("in.txt","r",stdin); 155 int i,j; 156 double ans,S; 157 Node t; 158 int min_x,max_x,min_y,max_y; 159 while(~scanf("%lf%lf%lf%lf",&ju[0].x,&ju[0].y,&ju[1].x,&ju[1].y)) 160 { 161 scanf("%d%lf%lf",&n,&A,&B); 162 min_x=510,max_x=0,min_y=510,max_y=0; 163 for(i=0;i<n;i++){ 164 scanf("%lf%lf",&nod[i].x,&nod[i].y); 165 min_x=Min(min_x,(int)nod[i].x); 166 max_x=Max(max_x,(int)nod[i].x); 167 min_y=Min(min_y,(int)nod[i].y); 168 max_y=Max(max_y,(int)nod[i].y); 169 170 } 171 S=(ju[1].x-ju[0].x)*(ju[1].y-ju[0].y); 172 173 ans=0; 174 for(i=min_x;i<=max_x;i++){ 175 for(j=min_y;j<=max_y;j++){ 176 t.x=i,t.y=j; 177 if(pinply(n,nod,t) || isonline(n-1,nod,t)){ 178 ans+=(A*i+B*j)*gets(t); 179 } 180 } 181 } 182 183 printf("%.3lf ",ans/S); 184 } 185 return 0; 186 }