题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2196
题意:给一颗树求距离每个节点的最远距离。。
每个节点维护两个信息就可以了,f[u][0]和f[u][1],分别表示子树的最大深度和次大深度,然后一边DFS合并子树就行了。。
1 //STATUS:C++_AC_15MS_1016KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 #pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=10010; 37 const int INF=0x3f3f3f3f; 38 const LL MOD=1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e50; 42 const int dx[8]={-1,-1,0,1,1,1,0,-1}; 43 const int dy[8]={0,1,1,1,0,-1,-1,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 struct Edge{ 59 int u,v,w; 60 }e[N<<1]; 61 int first[N],next[N<<1]; 62 LL f[N][2],ans[N]; 63 int n,mt; 64 65 void adde(int a,int b,int c) 66 { 67 e[mt].u=a,e[mt].v=b,e[mt].w=c; 68 next[mt]=first[a];first[a]=mt++; 69 e[mt].u=b,e[mt].v=a,e[mt].w=c; 70 next[mt]=first[b];first[b]=mt++; 71 } 72 73 void dfs1(int u,int fa) 74 { 75 int i,v; 76 LL t; 77 f[u][0]=f[u][1]=0; 78 for(i=first[u];i!=-1;i=next[i]){ 79 if((v=e[i].v)==fa)continue; 80 dfs1(v,u); 81 t=f[v][0]+(LL)e[i].w; 82 if(t>f[u][0])f[u][1]=f[u][0],f[u][0]=t; 83 else if(t>f[u][1])f[u][1]=t; 84 } 85 } 86 87 void dfs2(int u,int fa,LL max) 88 { 89 int i,v; 90 ans[u]=Max(f[u][0],max); 91 for(i=first[u];i!=-1;i=next[i]){ 92 if((v=e[i].v)==fa)continue; 93 if(f[v][0]+e[i].w==f[u][0]) 94 dfs2(v,u,Max(max,f[u][1])+(LL)e[i].w); 95 else dfs2(v,u,Max(max,f[u][0])+(LL)e[i].w); 96 } 97 } 98 99 int main(){ 100 // freopen("in.txt","r",stdin); 101 int i,j,a,b,ca=1; 102 while(~scanf("%d",&n)) 103 { 104 mem(first,-1);mt=0; 105 for(i=2;i<=n;i++){ 106 scanf("%d%d",&a,&b); 107 adde(i,a,b); 108 } 109 110 dfs1(1,0); 111 dfs2(1,0,0); 112 113 for(i=1;i<=n;i++) 114 printf("%I64d ",ans[i]); 115 } 116 return 0; 117 }