Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input |
Output for Sample Input |
5 5 10 8 10 22 3 1000000 2 0 100 |
Case 1: 3 Case 2: 5 Case 3: 45 Case 4: 18488885 Case 5: 1 |
题意:求阶乘在不同进制下的位数。
用对数搞一搞就好啦,设阶乘n在k进制下位数为sum,sum=(int)logk(n!)+1=(int)(log10(n!)/log10(k))+1;然后以10为底打个表就好了。
注意n==0的时候特判一下。
#include<stdio.h> #include<string.h> #include<math.h> #include<algorithm> #define LL long long using namespace std; double sum[1000005]; void inin() { sum[0]=0.0; for(int i=1; i<=1000000; i++) sum[i]=sum[i-1]+log10(i); } int main() { inin(); int T, t=1, n, k; scanf("%d", &T); while(T--) { scanf("%d%d", &n, &k); if(n==0)printf("Case %d: 1 ", t++); else printf("Case %d: %d ", t++, (int)(sum[n]/log10(k))+1); } return 0; }